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Application Example 13 

(Propagation of uncertainty through linear formulas: second-moment analysis) 


DESIGN LOAD FACTORS FOR STRUCTURAL COLUMNS 

Load factors are numbers greater than 1 by which nominal loads are multiplied to provide 

sufficient safety in structural design. Design codes allow engineers to use different design 

load factors on structural columns depending on the number of floors supported by the 

column. The factors typically decrease as the number of supported floors increases. This 

might sound counter-intuitive, since one would expect the code to require a higher level 

of safety for taller buildings. The uncertainty analysis that follows explains the rationale 

for such code provision. 

Second Moment Analysis of Column Load 

Suppose that a structural column supports n floors and that the load on the column, F, 

comes primarily from dead loads (D) and live occupancy loads (L). Therefore, the total 

load on the column is 
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  F = D + L        (1)  

where 
n 
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and Di and Li are the dead and live loads contributed by floor i. In most cases, dead loads 

are much more accurately known that live loads are. Therefore, D may be considered 
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deterministically known. A second simplifying assumption we make is that the live loads 

Li have the same marginal distribution (hence they have the same mean value m, the 

same variance σ2, and the same coefficient of variation V = σ/m for all floors). Finally, 

we assume that the loads Li are “equicorrelated”, meaning that the correlation coefficient 

between Li and Lj is the same for all i ≠ j. We denote such correlation coefficient by ρ. 

Under these conditions, the mean value, variance and coefficient of variation of L in Eq. 

2 are 

mL = nm


2 2σ2 1 − ρ  
σL = nσ2 + n(n −1)ρσ2 = n  n 
+ρ (3)  

1− ρ  

n 
+ ρVL =

σL = V

mL


Design Load F* 

The question we want to address is, what is a reasonable load value F* to be used for 

design? Under the current assumptions, the mean value and variance of F are 

mF = D + mL = D + nm 

2 = σL
2 = n2σ2 1− ρ

+ ρ      (4)  
σF  n  

and a sensible way to express F* is F* = m F + γσF  where γ is a factor of safety with 

typical values between 3 and 5, depending on the importance of the building. Using Eq. 

4, F* may be expressed as 

F *= D + mL + γmLVL 
= D + (1 + γVL )mL

     (5)  

Equivalently, one may set β = (1 + γVL) and write Eq. 5 as 
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F* = D +βmL        (6)  

Notice that, while the factor γ is applied to the standard deviation of L, the factor β is 

applied to the mean value of L.  

Factor β in Eq. 6 

It is interesting to see how β in Eq. 6 varies with the number of supported floors n, the 

correlation coefficient ρ between the live loads on different floors and the coefficient of 

variation V of the live loads Li, in addition to the factor γ. Using Eq. 3, 

β = 1 + γVL 
1 − ρ        (7)  

= 1 + γV + ρ
n 

While the dependence of β on γ and V is evident, that on n and ρ is more complicated. 

Noticeable features of Eq. 7 are: 

(i) For ρ = 0 (uncorrelated live loads), β = 1 + γV n  . This shows that, if one aimed at 

achieving the same reliability irrespective of the number of floors, then one would 

have to take β - 1 ∝ 1 , with β → 1 as n → . This limiting case makes sense, n


because for ρ = 0 and n → ∞, Eq. 3 gives VL → 0. 


(ii) For ρ > 0 (positively correlated live loads, which is a typical case in practice), the 

1 − ρ  
term +ρ  in Eq. 7 approaches the positive value ρ  as n → ∞. The reason 

n 

why the asymptotic value of β is greater than 1 is that, when ρ > 0, VL does not 

vanish asymptotically as n → ∞. 

(iii) For ρ = 1 (identical live loads on different floors), VL does not depend on n. Then 

also β is independent of the number of floors n, with value β = 1 + γV; 
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(iv) ρ < 0. Although in the present problem negative correlations are unlikely to occur, it 

is nevertheless interesting to see what happens mathematically in this case. Notice 

1 − ρ first that, for ρ < - 1/(n-1), the factor  + ρ  in Eq. 3 becomes negative, 
n 

producing a negative value of σL
2 . This is of course impossible, because the variance 

cannot be negative. Indeed, in the case of n equicorrelated variables, ρ must be larger 

than -1/(n - 1). As n → ∞, this condition becomes ρ > 0. 

Problem 13.1 

(a) Plot the factor β in Eq. 7 against n (say, for n from 1 to 30) for γ = 3, VL = 0.1 and 

three values of the correlation coefficient, ρ = 0, 0.1, 0.3 (total of 3 plots, one for 

each ρ). Comment on the results. 

(b) For certain buildings and certain types of occupancy, the assumption of 

equicorrelated live loads on different floors may not be appropriate. Consider as an 

alternative a live-load model with floor loads Li and Lj that have an exponentially 

decaying correlation, of the type 

Corr[Li, Lj] = ρ|i-j|       (8)  

where ρ is a positive number less than 1. According to this model, live loads on 

widely separated floors are less correlated than live loads on adjacent floors. Modify 

the analysis for this case. Produce plots of β against n for γ = 3, VL = 0.1 and ρ = 0, 

0.1, 0.3. Compare with the equicorrelated case. 

Notice that the variation of β with n is ultimately related to the fact that the correlation 

coefficient of the sum of non-perfectly dependent random variables decreases as the 

number of added variables increases. This result is also at the basis of other important 

observations, for example that the variability in monthly precipitation, when measured 
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through the coefficient of variation, is much smaller than the variability in daily 

precipitation. Another example of the reduction in variability when summing or 

averaging many variables is the reduction in the coefficient of variation of the strength of 

large material specimens relative to smaller specimens. 

Problem 13.2 

Formulate a problem from your area of professional interest or from everyday life, in 

which the variability of the sum of several variables matters. Judgmentally assign mean 

values, variances, and correlation coefficients to the variables that are being added. 

Calculate the mean value, variance, and coefficient of variation of the quantity of interest 

(the sum). Comment on the results. 
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