
1.00/1.001/1.002
Introduction to Computers and Engineering

Problem Solving

Recitation 8
Phidget Setup, Model-View-Controller, 2D API,

Affine Transformations

April 9 & 10 2012

1

Phidget Interface Kit
1. Download the Phidgets software for your OS from

www.phidgets.com/drivers.php.

2. Install it. Choose 32 bit or 64 bit version to match your OS and the version of
Java you installed

3. Download the phidget.jar file from
www.phidgets.com/programming_resources.php

4. Unzip it to someplace where you can find it again.

5. Open your Phidget kit and find:
1. USB cable to connect the interface board to your computer

2. Interface board (1018)

3. Force sensor (1106) with its cable

4. A green LED

6. Connect them as in the image
– USB from laptop to interface board

– Force sensor to Analog In1

– LED wired between GND and Digital Out 0

– Short wire in GND, long in Digital Out 0

– Use the screwdriver for the LED

2 Courtesy of V. Judson Harward. Used with permission.

www.phidgets.com/drivers.php
www.phidgets.com/programming_resources.php

Phidget Interface Kit, 2

• If you have installed the Phidget software, you should see a Phidget
icon in your taskbar:

• Click it. It should bring up the Phidget test application
– If it brings up the Phidget control panel, click the General tab and then double click

the Phidget interface kit device to bring up the test app

• Press the Phidget force sensor button. Watch the reading change.

• Click Digital Out box 0

• LED should light up

You must close this window
when using Eclipse!!!

3

Courtesy of Phidgets. Used with permission.

Phidgets and Java

• Download PressureController.java and compile it in a new
project
– You get errors because Eclipse can't find the Phidget.jar file, the

library that tells Java how to communicate with Phidgets

• Open the Java Properties/Java Build Path popup by right
clicking on the project

• Click "Add External Jars…" and navigate to where you
unzipped the phidget21.jar file

• Select it and click Open, and then OK
– Next slide shows before and after shots

– Errors will disappear from java files

• Run PressureController
4

Phidgets and Java
Before adding

After adding

5

Courtesy of The Eclipse Foundation. Used with permission.

Phidget21.jar

• Jar file is a Java archive

– Zip format of compiled (byte code) Java classes

• By placing it in your project, you can use all
its classes

• See its documentation (API Reference) for a
list of classes and methods. Download from

– phidgets.com/programming_resources.php

– Unzip

– Bookmark it in your browser

• Also look at Java Getting Started Guide
6

Phidgets Javadoc

7

Courtesy of Phidgets. Used with permission.

Model-View-Controller Construction

Controller

Model

View

create

create

create

create

8

Model-View-Controller Operation

Controller

Model

View

1) The button passes an
Action Event to the
controller

2) The controller
updates the model

3) The controller
calls repaint() on
the view

4) The view
gets the

data it
needs to

repaint

5) The view
repaints

9

Model-View-Controller
public class Model

{

 // data members

 public Model(...){...}

 //get/set methods for the

 //View/Controller respectively

}

public class View extends JPanel

{

 private Model model;

 public View(Model m) {

 model = mo;

 }

 public void paintComponent(...)

 {

 // drawing statements using

 // data from model

 }

}

public class Controller extends JFrame

{

 private Model model;

 private View view;

 private JButton b;

 public Controller() {

 model = new Model(...);

 view = new View(m);

 getContentPane.add(v)

 b = new JButton("...");

 b.addActionListener(...);

 getContentPane.add(b)

 // other JComponents and

 // anonymous inner classes

 // that modify the Model/View

 }

 public static void main(...){

 Controller c =new Controller();

 }

}

 10

Model-View-Controller Exercise

We will write another version of the
combination lock program from recitation 7
using, this time, a model-view-controller
implementation.

Open/Close button
 - if the lock is opened, close it.
 - if the lock is closed, open it if the
 digits match the combination

Change Combination button:
 - when clicked while lock is opened,
 set the combination to the current
 digits

© Oracle. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

11

http://ocw.mit.edu/fairuse

LockModel
Create a model class called LockModel for the lock. A new lock is initially
opened.
- Data members to keep track of the state of the lock?
- Methods to interact with controller and view?

12

LockView (1)

Create a view class that extends JPanel.
Add the appropriate data members and write the constructor.
- How does the view get data from the model when repainting?
- Do not implement paintComponent yet.

13

LockView 2D Drawing Exercise

100

100

100

300

200

Write the paintComponent(Graphics g)method to draw the lock opened or

closed, depending on the state of the model. Use the following shapes:

- Line2D.Double(xA, yA, xB, yB)

- Rectangle2D.Double(xCorner, yCorner, height, width)

- Arc2D.Double(xCorner, yCorner, height, width, startAngle, endAngle, 0)

© Oracle. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

14

http://ocw.mit.edu/fairuse

LockController (1)
Create a LockController class. Add the data members and the main() method, which
should only create an instance of the controller and display it.
- We’ll add the constructor later.

15

LockController (2)
Write the constructor so that the frame looks as follows.
 - We'll add the code to handle events later.

© Oracle. All rights reserved. This content
is excluded from our Creative Commons
license. For more information, see
http://ocw.mit.edu/fairuse.

16

http://ocw.mit.edu/fairuse

LockController (3)
Complete your program by attaching an anonymous inner class to each button.
When a button is pressed, you need to:
- retrieve the user input
- update the model
- tell the view to repaint

17

Affine Transformations

Shapes are drawn using reference axes
Applying a 2D transformation is equivalent to transforming those axes.
The shapes drawn afterwards are drawn in the transformed reference axes.

The default axes are in the top left hand corner, y pointing down.

Rectangle2D r = new Rectangle2D.Double(30,30,40,40);

 Default axes

g2.draw(r);

© Oracle. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

18

http://ocw.mit.edu/fairuse

Affine Transformations

Rectangle2D r = new Rectangle2D.Double(30,30,40,40);

AffineTransform t

= new AffineTransform();

t.translate(75,25);

g2.transform(t); Default axes g2.draw(r);

© Oracle. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

19

http://ocw.mit.edu/fairuse

Combined Transformations

When multiple transformations are combined (a single AffineTransform
object is used), the transformations are applied in reverse of the order that
they were called.

How does the following AffineTransform change the axes?
 AffineTransform t = new AffineTransform();

 t.translate(100,0);

 t.rotate(Math.toRadians(30));

g2.transform(t);

1)

1) 2)

2)

Default axes
© Oracle. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

20

http://ocw.mit.edu/fairuse

Successive Transformations
When two transformations are applied separateley (g2.transform() is called
twice), the second transformation is defined in the axis system resulting
from the first transformation.

AffineTransform s

= new AffineTransform();

s.translate(100,0);

g2.transform(s);

AffineTransform t

= new AffineTransform();

t.rotate(Math.toRadians(30));

g2.transform(t);

Default axes

© Oracle. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.
21

http://ocw.mit.edu/fairuse

Compare

AffineTransform t = new AffineTransform();

t.rotate(Math.toRadians(60));

t.translate(100, 0);

g2.transform(t);

AffineTransform t = new AffineTransform();

t.translate(100, 0);

t.rotate(Math.toRadians(60));

g2.transform(t);

AffineTransform t = new AffineTransform();

t.rotate(Math.toRadians(60));

g2.transform(t);

t = new AffineTransform();

t.translate(100, 0);

g2.transform(t);

AffineTransform t = new AffineTransform();

t.translate(100, 0);

g2.transform(t);

t = new AffineTransform();

t.rotate(Math.toRadians(60));

g2.transform(t);

1

2

1

2

2

1

2

1

22

Combined vs. Successive Transformations

AffineTransform t = new AffineTransform();

t.rotate(Math.toRadians(45));

g2.transform(t);

t = new AffineTransform();

t.scale(2,1);

g2.transform(t);

t = new AffineTransform();

t.translate(50,0);

g2.transform(t);

What does the set of axes look like after the following transformations are applied?

23

Remember, Quiz 2 Review

Date: Wed. April 11
Time: 7pm – 9pm

24

MIT OpenCourseWare
http://ocw.mit.edu

1.00 / 1.001 / 1.002 Introduction to Computers and Engineering Problem Solving
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

