
1.00/1.001
Recitation 06

Abstract Classes/Methods and Interfaces

March 19th & 20th 2012

1

Topics

• Abstract Classes (extends)
• Interfaces (implements)
• Polymorphism
• Problem Set 5

2

Abstract Classes: Content

• Some data members, like any class
• Some methods implemented (concrete)
• Some methods declared, but

unimplemented (abstract)
– We generally know what the method does
– How the method performs may be different

for different objects

3

Abstract Classes: Coding

• Abstract classes cannot be instantiated.
– Instantiate (v.) – use the “new” keyword to create

a new Object (or instance of a class)
– Some methods remain unimplemented.

• Subclasses must implement all abstract
methods, or must also be abstract classes.

• Why make a method abstract?
– Provide some default behaviors in concrete

methods
– Programmer is FORCED to implement methods in

a subclass before any object can be instantiated.
4

abstract Keyword
public abstract class MyClass {

 // data members
 private int myDataMember;

public MyClass (int md){
 // concrete methods have‘bodies’ or definitions
 myDataMember = md;
}

public int getData(){
 // concrete method
 return myDataMember;

}

 public abstract int calc(int factor);

 // abstract methods omit the „body‟
}

ˆ

ˆ ˆ

5

extends Keyword
public class AnotherClass extends MyClass{

public AnotherClass (int md){
 // call constructor from “parent” or super class
 super(md);

}

 // implement all abstract methods
 public int calc(int factor){

 return factor * factor;

 }

}

ˆ

6

Abstract Classes: Exercise 1 p.1
1) Write an abstract class Shape

– Data members: numSides
– Constructor: initialize numSides
– Concrete method: get method for numSides
– Abstract methods: getArea(), getPerimeter()

2) Write a concrete subclass Rectangle
– Data members: width, height

3) Write a concrete subclass RtTriangle
– Data members: width, height

4) In another class, write a main method to
define a Rectangle and a Triangle.

7

Solution: Shape

1 public abstract class Shape

2 {

3 private int numSides;

4

5 public Shape(int newSides)

6 {numSides = newSides;}

7

8 public int getNumSides()

9 {return numSides;}

10

11 public abstract double getArea();

12 public abstract double getPerimeter();

13 }

8

1) Write an abstract class Shape
– Data members: numSides
– Constructor: initialize numSides
– Concrete method: get method for numSides
– Abstract methods: getArea(), getPerimeter()

2) Write a concrete subclass Rectangle
– Data members: width, height

3) Write a concrete subclass RtTriangle
– Data members: width, height

4) In another class, write a main method to
define a Rectangle and a Triangle.

Abstract Classes: Exercise 1 p.2

9

Abstract Classes: Exercise p.3
1) Write an abstract class Shape

– Data members: numSides
– Constructor: initialize numSides
– Concrete method: get method for numSides
– Abstract methods: getArea(), getPerimeter()

2) Write a concrete subclass Rectangle
– Data members: width, height

3) Write a concrete subclass RtTriangle
– Data members: width, height

4) In another class, write a main method to
define a Rectangle and a Triangle.

10

Abstract Classes: Exercise p.4
1) Write an abstract class Shape

– Data members: numSides
– Constructor: initialize numSides
– Concrete method: get method for numSides
– Abstract methods: getArea(), getPerimeter()

2) Write a concrete subclass Rectangle
– Data members: width, height

3) Write a concrete subclass RtTriangle
– Data members: width, height

4) In another class, write a main method to
define a Rectangle and a Triangle.

11

Interfaces
• “Its like a checklist”: Class that implements an

interface must implement/define all methods
declared in the interface.

• A set of related method declarations.
• All method declarations omit the body.
• Constants may be defined.

• Why use interfaces?

– Define a set of behaviors
– Allow “multiple inheritance” by implementing multiple

interfaces
12

Abstract Classes vs. Interfaces

• Abstract Classes have
– Static and instance data

members
– Concrete and/or abstract

methods
– Single inheritance

(via extends)
– Constructor

• Interfaces have
– Static final data members

(constant)
– All methods abstract
– “Multiple Inheritance”

(via implements)
– No constructor

13

Remember Abstract Class Shape
and Subclass Rectangle?

public abstract class Shape {

 private int numSides;

 public Shape(int numSides){

 this.numSides =

numSides;

 }

 public double getNumSides()

{

 return numSides; }

 public abstract double

getArea();

 public abstract double

getPerimeter();

}

public class Rectangle extends
 Shape {

 private double height, width;

 public Rectangle(double w,
 double h) {

 super(4);

 this.height = h;

 this.width = w;

 }

 public double getArea() {

 return height * width;

 }

 public double getPerimeter() {

 return 2 * (height + width);

 }

}

14

Interface: Exercise 2 p.1

1) Write an interface Resizable
– Has a method resize(double x) that

resizes a Shape’s dimensions by factor x
2) Make Rectangle implement Resizable
3) Write a main method to:

- Define a Rectangle (width = 2, height = 3)
- Print the Rectangle‟s area & perimeter
- Resize the Rectangle by factor of 2
- Re-print the Rectangle‟s area & perimeter

15

Interface: Exercise 2 p.2

1) Write an interface Resizable
– Has a method resize(double x) that

resizes a Shape’s dimensions by factor x
2) Make Rectangle implement Resizable
3) Write a main method to:

- Define a Rectangle (width = 2, height = 3)
- Print the Rectangle‟s area & perimeter
- Resize the Rectangle by factor of 2
- Re-print the Rectangle‟s area & perimeter

16

Interface: Exercise 2 p.3

1) Write an interface Resizable
– Has a method resize(double x) that

resizes a Shape’s dimensions by factor x
2) Make Rectangle implement Resizable
3) Write a main method to:

- Define a Rectangle (width = 2, height = 3)
- Print the Rectangle‟s area & perimeter
- Resize the Rectangle by factor of 2
- Re-print the Rectangle‟s area & perimeter

17

instanceof Keyword

• The instanceof operator compares an object to a
specified type.

• You can use it to test if an object is:
- an instance of a class,
- an instance of a subclass,
- or an instance of a class that implements a

particular interface.
Source: http://docs.oracle.com/javase/tutorial/java/nutsandbolts/op2.html

18

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/op2.html

public class Animal {

 //body hidden

}

public class Cow extends Animal{

 //body hidden

}

Here class Lion and Cow extends Animal

instanceof Example

public class Lion extends Animal{

 //body hidden

 public void roar(){//body hidden}

}

1 public static void main(String[] args) {
2 Animal[] zoo= new Animal[2];
3
4 zoo[0] = new Cow();
5 zoo[1] = new Lion();
6
7 for(int i =0; i<zoo.length; i++){
8 Animal a = zoo[i];
9 if(a instanceof Lion){ //test using instanceof keyword
10 System.out.println(”Animal " + i + “ is a Lion”);
11 Lion l = (Lion) a; //Cast the Object to a Lion
12 l.roar(); //Call a method in the Lion class
13 }
14 }

 Prints: Animal 1 is a Lion
19

Polymorphism: Exercise
• Write a main method

– Create a Rectangle and a RtTriangle
– Add them to an ArrayList of *Shapes*
– Iterate through the Shapes in the ArrayList

• If the Shape is Resizable, resize it by a factor of 0.5
• Print out perimeter and area

20

• Write a program to model MBTA vehicles

• Three types of vehicles: Bus, Urban Rail,
and Commuter Rail

• Three kinds of Right-of-Way: Dedicated,
Shared, and Mixed (Hybrid)

Problem Set 5

• This homework tests your knowledge of inheritance. Your
solution must inherit as much as possible from the superclasses
and/or interfaces.

• Be sure to use at least one of EACH of the following in your
solution: abstract class, interface, abstract method, final method.

• Hint: The trick is to determine if the set of Route Types and
ROW Types should be Interfaces or Classes (Inheritance
structure)
- Which Types require “multiple inheritance”?

21

MIT OpenCourseWare
http://ocw.mit.edu

1.00 / 1.001 / 1.002 Introduction to Computers and Engineering Problem Solving
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

