
Announcements

• FINAL EXAM Monday May 21, 1:30pm

• Review Session

– Wednesday May 16, 7-9pm

1

Recitation 12

Root Finding, Sorting, Stacks, Queues

2

Outline

• Linked Lists

• Sorting

• Queues

3

Object References

Let’s start with a class called “Node”

Node.java class Node{

}

Node.java

(Node object)

n

n2

These are object references. Notice how there is only ONE object, and each reference
“refers” to it.

To create an instance of Node:

Node n = new Node();

Node n2 = n;

4

Fun with References

Let’s add to our Node class
Node.java

Now, let’s use the following code:

Node n1 = new Node();

Node n2 = new Node();

n2.next = n1;

n1.next = n2;

class Node{

 Node next;

}

Node.java

next n1

next n2

5

Serious Work with References

Let’s add a data member to store some information.

(It could be a primitive type or an object reference…
or anything else you want)

Node.java

Now, let’s use the following code:

Node first =

first.value=1;

first.next =

first.next.value=2;

first.next.next =

first.next.next.value = 3;

class Node{

 Node next;

 int value;

}

Node.java

first
next

value 1

next

value 2

next

value 3

It’s a Linked List!

new Node();

new Node();

new Node();

6

Linked Lists
• A linked list is made of a series of Nodes, each

with:

– an associated item object

– a reference to the next node of the list

• Simplified “double-box” picture:

• Traverse the list by following each node’s “next”
reference

B

next

item

C

next

item

A

next

item

7

SLinkedList
For convenience, create a class with references to the
first & last nodes, with methods, so we don’t have to re-
write the manipulation code each time.

public class SLinkedList implements List{

 private int length = 0;

 private Node first = null;

 private Node last = null;

 private static class Node {

 Object item;

 Node next;

 Node(Object o, Node n){ item = o; next = n; }

 }

 public int size() {/*code…*/}

 public boolean isEmpty() {/*code…*/}

 public boolean contains(Object o) {/*code…*/}

 public void clear() {/*code…*/}

 // various add() and remove() methods…

}

Our original
Node class

8

What’s so great about
Linked Lists?

BIG Pros:
• A Linked List can grow dynamically.

(To resize an array you have to create a new, larger array, and copy everything over)

• A linked list does NOT need contiguous memory.
(A Java 1-D array has to occupy contiguous memory. When storing large amounts of data,

finding back-to-back-to-back… memory can be impossible)

Cons:
• The references add overhead.
• Access is slower than an array.
• The code to maintain a Linked List can be complex.
• Depending on how the ‘links’ (references) are structured, you

may only be able to traverse one way…

9

• Always think of special cases

– What if your list is empty?

– What if there is only one element?

• Always draw a diagram!

Linked List: Tips

next next next

first last

10

Sorting

• Sortable objects implement
Comparable<Object> or have Comparator
defined

• Comparable:

– Define compareTo()

– For object.compareTo(other):

• returns 1 if other higher ranked than object

• returns 0 if equally ranked

• returns -1 otherwise

11

Sorting

• Comparator:

– New class Object1Object2Comparator

– Implements Comparator<Object>

– Must define compare(). For
compare(a, b):

• returns 1 if b higher ranked than a

• return 0 if equally ranked

• returns -1 otherwise

12

Sorting Exercise

• Sort restaurants by rating (high to low) then
distance (close to far)

public class Restaurant {
 String name;
 int rating;
 double distance;

 public Restaurant(String n, int r, double d){
 name = n;
 rating = r;
 distance = d;
 }

 public String toString(){
 return name + ": " + rating + "/5.0, " + distance + " meters away.";
 }
}

13

Stacks and Queues

• Structures store, manage data
• For data with an inherent order

– Think of structures like a line to get into a movie

• Stacks: people are added and removed from
same end of line
– Last person in an elevator is the first person out of the

elevator

• FIFO Queue: people added to back of line,
removed from front
– First In First Out, the way you expect a ticket line to

work

14

Stacks

• Single end

• LIFO: Last In First Out

– push(): add an element

– pop(): remove top
element

• Applications:
– Simulation: robots,

machines
– Recursion: pending

function calls
– Reversal of data

15

Stack Interface

import java.util.*; // For exception

public interface Stack

{

 public boolean isEmpty();

 public void push(Object o);

 public Object pop() throws

 EmptyStackException;

 public void clear();

}

16

Queues

• Two ends

• FIFO: First In First Out
– push(): add an element

to top

– pop(): remove bottom
element

• Applications:
– Simulation: lines

– Ordered requests:
device drivers, routers, …

– Searches

17

Queue Interface

import java.util.*;

public interface Queue

{

 public boolean isEmpty();

 public void add(Object o);

 public Object remove() throws
 NoSuchElementException;

 public void clear();

}

18

Exercise

• What is the final output?

– Add {2, 4, 6, 8} to a stack #1

– Remove three items from stack, place in queue

– Remove two items from queue, place in stack #2

– Remove one item from stack #2, place in queue

– Remove one item from stack #1, place in stack #2

Queue:
{6, 4}

Stack #2:
{2, 8}

19

Exercise

• Write a class to store a queue in a linked list

– What happens when you remove the last object?

– What happens when you try to remove an object
from an empty list?

 public interface Queue {

 public void enqueue(int item); // add to end

 public int dequeue() throws Exception; // remove from front

}

20

MIT OpenCourseWare
http://ocw.mit.edu

1.00 / 1.001 / 1.002 Introduction to Computers and Engineering Problem Solving
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

