
1.00/1.001/1.002
Introduction to Computers and Engineering

Problem Solving

Recitation 10
Threads

April 30 & May 1 2012

1

Processes vs. Threads

What is the difference?

• The MOTHER of all programs.

• It helps standardize how other programs
(applications) can use computer
resources.

• It schedules which programs run when.

First, What is an Operating System (OS)?

Both terms describe interleaving operations to make it appear
that multiple things are happening in parallel

2

Processes
• An instance of a computer program being executed. Managed by the OS.

• Insular: Each process uses its own resources and has a reasonable amount of
processing time. Most modern operating systems prevent communication
between independent processes.

• Safe: Separation of memory spaces allows one program to continue running even
if another program writes garbage into its memory space (and crashes). Insulation
can also prevent spreading viruses.

time

Process 1: email

Process 2: browser

Process 3: Word

Process 4: Eclipse

3

Threads
• If a process is an operating system’s way of interleaving programs, a thread is a program’s way of interleaving

sections of code.

• Not independent: Multiple threads can run within the same process and share resources such as memory

while different processes don’t share resources.

• On a multi-core or multiprocessor system (most computers today) the threads or tasks will actually run at the

same time in parallel! On a single processor the processor switches between different threads frequently

enough that the user perceives that the threads are running at the same time. In the diagram below for

example, thread 2 and thread 3 can be running at the same time, so the yellow and green boxes can overlap.

time

Process 4 (Eclipse):

Thread 1 (Swing Events):

Thread 2 (Main Method):

Thread 3 (Garbage Collection):

Zoom In

4

Threads: Analogy
Cookbook:

• A set of cooking instructions

Cooking from the cookbook:

• One or more cooks following the cookbook

Cook:

• Multiple cooks can cook from the same cookbook

• Each cook is following a set of cooking instructions

- not necessarily on the same page

• Can use the same utensils/food

• Can cook in parallel

Computer program:

• A set of computer instructions

Process:

• An instance of a computer program running

Thread:

• Multiple threads can run in the same process

• Each thread executing a set of program instructions

- not necessarily same section of code

• Can share the program resources

• Can execute in parallel (multi-core processor)

Need to synchronize!

Image removed due to copyright restrictions. Image removed due to copyright restrictions.

5

Creating your own Thread
(extend class Thread)

public class MyThread extends Thread{
 public void run(){

// code executed in the Thread goes here}
 }

 public static void main(String[] args){

 t.start(); // start the thread
 // code executed in Main goes here
 }
}

time

Thread 1 (Main):

Thread 2 (Thread):

Main

Thread

Thread t = new MyThread()

6

Creating your own Thread
(implement interface Runnable)

public class MyThread implements Runnable{
 public void run(){
 // code executed in the Thread goes here
 }

 public static void main(String[] args){

 t.start(); // start the thread
 // code executed in Main goes here
 }
}

time

Thread 1 (Main):

Thread 2 (Thread):

Main

Thread

Thread t = new Thread(new MyThread());

7

class Thread instance methods

If you create a new thread, i.e.:

Thread t = new Thread();

These are some methods you can call in the Main thread
(OR any thread but thread t):

t.start()

 start thread t by executing the code in method run()

t.isAlive()

 returns true or false, whether thread t still exists.

t.join()

 Halt calling thread execution until thread t completes.
8

Thread.sleep
static void sleep (long millis)

• Causes the currently executing thread to sleep (temporarily cease execution) for the specified
number of milliseconds.

These sleep times are not guaranteed to be precise because they are limited by the facilities
provided by the underlying OS. Also, the sleep period can be terminated by interrupts. You cannot
assume that invoking sleep will suspend the thread for precisely the time period specified.

public class SleepMessages{
 public static void main(String args[]){
 String importantInfo[] = {
 "1.00 Final Review Session May 18",
 "1.00 Final May 18", "Need to return Phidgets"};

 for (int i = 0; i < importantInfo.length; i++) {
 //Pause for 4 seconds

 try{

 Thread.sleep(4000);
 }Catch(Exception e){
 System.err.println(e);
 }

 //Print a message
 System.out.println(importantInfo[i]);
 }
 }
}

9

http://docs.oracle.com/javase/1.4.2/docs/api/java/lang/Thread.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/lang/Thread.html

Threads Example (Bad one)

Try to run the program a few times? Do you always see 20,000? Why?

public class Model {
private int count;
public void increment() {count++;}
public static void main(String [] ars){

Model m = new Model();
Thread a = new MyThread(m);
Thread b = new MyThread(m);
a.start(); b.start();
try{ a.join(); b.join(); }
catch(Exception e){
 System.err.print(e);
}
System.out.println(m.count);

}
}

public class MyThread extends Thread{
private Model m;

public MyThread(Model m){
this.m = m;
}

public void run(){

for(int i=0;i!=10000;i++)
m.increment();

}
}

10

The application of particular mechanisms to ensure that two concurrently
executing threads do not execute specific portions of a program at the same time
preventing problems such as below:

 Thread Interference: happens when two operations running in different
threads but acting on the same data, interleave. This means that the two
operations consist of multiple steps, and the sequences of steps overlap.

 Memory consistency: occurs when different threads have inconsistent views
of what should be the same data like the bank account example in lecture.

Java has synchronized keyword to avoid such problems:
 public synchronized void compute() {
 // body of method
}

• compute() cannot be interrupted by another synchronized method acting on the
same object.
• If a second thread attempts to execute another synchronized method on the
same object, the second thread will wait until the first synchronized method exits.

Thread Synchronization

11

Threads Example (With synchronized)

public class Model {
private int count;
public synchronized void increment()

{count++;}
public static void main(String [] ars){

Model m = new Model();
Thread a = new MyThread(m);
Thread b = new MyThread(m);
a.start(); b.start();
try{ a.join(); b.join(); }
catch(Exception e){
 System.err.print(e);
}
System.out.println(m.count);

}
}

public class MyThread extends Thread{
private Model m;

public MyThread(Model m){
this.m = m;
}

public void run(){

for(int i=0;i!=10000;i++)
m.increment();

}
}

12

• With very few exceptions, the Swing classes expect to have their methods called only from
the event thread.

• Sometimes you want to update the information in a GUI from another thread (e.g., the
main thread, a sensor thread, the CustomThread you just wrote).

• To do this create an object that describes a task to be performed in the event thread at
some future time.

Ex: JPanel component = …
 Runnable update = new Runnable() {
 public void run() {
 component.doSomething(); // Task
 };

• Then pass that object to the event thread using a synchronized method that places it in the
event thread's queue.

 SwingUtilities.invokeLater(update);

 invokeLater() is a synchronized static method in the SwingUtilities class in the javax.swing
package. It inserts the task in the event queue.
• Swing will execute the task when it can.

Threads and Swing

13

Homework 9: Dam Management
Threads and Sensors

• Control reservoir volume and generated voltage from sensors
• Create threads that random inject/withdraw reservoir water
• Display results (shown above) using Swing

© Oracle. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

14

http://ocw.mit.edu/fairuse

Homework 9: Dam Management
Threads and Sensors

• Multiple threads
• Water injection/withdraw threads
• Sensor change event is a separate thread
• Swing runs in its own thread
• Main thread

• Use of Synchronization keyword
• Figure out which method(s) are called concurrently from

multiple threads
• Interleave calls to these method(s) using synchronization

• Use invokeLater() method to “post” jobs to Swing dispatching

queue from non-Swing thread such as the sensor thread
15

MIT OpenCourseWare
http://ocw.mit.edu

1.00 / 1.001 / 1.002 Introduction to Computers and Engineering Problem Solving
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

