
1

1.00 Lecture 8

Classes, continued

Reading for next time: Big Java: section 8.9

Building Classes, cont.

•  From last time:
•  Tank is a Java class used by the TankTest

class
•  TankTest uses Tank objects:
–  First construct the objects and specify their initial

state
•  Constructors are special methods to construct and

initialize objects
•  They may take arguments

–  Then apply methods to the objects
•  This is the same as sending messages to them to invoke

their behaviors
•  The messages respond with their return values

2

Constructor for Tank Object

•  To construct a new Tank object, two things are
required:
–  Create the object (using its constructor)

 nnew Tank(0.5, 4.0, 0.04); // Use original example

 // new allocates memory and calls constructor

–  Give the object a name or identity:
 Tank tank0;

 // Object name (tank0) is a reference to the object

 // Tank is the data type of tank0

–  Combine these two things into a single step:
 Tank tank0= new Tank(0.5, 4.0, 0.04);

–  We now have a Tank object containing the values:
•  Radius 0.5 meters
•  Length 4.0 meters
•  Thickness 0.04 meters

–  We can now apply methods to it.

Using Methods
•  Methods are invoked using the dot (.) operator

–  Method always ends with parentheses
 Tank tank0= new Tank(0.5, 4.0, 0.04);

 Tank tank1= new Tank(1.0, 1.0, 0.04);

 double v= tank0.getVolume(); // Dot operator

 double w= tank1.getWeldLength(); // Dot operator

–  Methods are usually public and can be invoked anywhere

•  Data fields are also invoked with the dot (.) operator
–  No parentheses after field name

 double r= tank0.radius;

 double t= tank0.thickness;

–  Private data fields can t be accessed outside their class
•  The data fields in our Tank example cannot be accessed this

way in TankTest because they re all private to Tank
•  If they were public in Tank, they could be seen from TankTest
•  Private fields can be accessed this way within class Tank

3

Get() and Set() Methods

•  We ve seen get() methods
–  They ask an object to compute or return a fact

about itself
public double getVolume() {

 return Math.PI*radius*radius*length;

}

public double getRadius() {return radius;}

•  Set() methods tell an object to change one
if its data members

 public void setRadius(double r) {
 radius= r;

 }

Get() and Set() Methods 2

•  We ve seen get() methods
–  They ask an object to compute or return a fact

about itself
public double getVolume() {

 return Math.PI*radius*radius*length;

}

public double getRadius() {return radius;}

•  Set() methods tell an object to change one
if its data members

 public void setRadius(double radius) {
 this.radius= radius;

 } // this is keyword for current object

4

Objects and Names
 new Tank(0.5, 4.0, 0.04);

Tank

0.5 4.0 0.04

Objects and Names
TTank t0= new Tank(0.5, 4.0, 0.04);

t0= Tank

0.5 4.0 0.04

5

t0= Tank

0.5 4.0 0.04

p= Pipe

0.1 10.0

Objects and Names
Tank t0= new Tank(0.5, 4.0, 0.04);

Pipe p= new Pipe(0.1, 10.0); // radius, length

t0= Tank

0.5 4.0 0.04

p= Pipe

t1= Tank

1.0 1.0 0.04

0.1 10.0

Objects and Names
Tank t0= new Tank(0.5, 4.0, 0.04);

Pipe p= new Pipe(0.1, 10.0); // radius, length

Tank t1= new Tank(1.0, 1.0, 0.04);

6

t0= Tank

0.5 4.0 0.04

p= Pipe

t1= Tank

1.0 1.0 0.04

0.1 10.0

t2=

Objects and Names
Tank t0= new Tank(0.5, 4.0, 0.04);

Pipe p= new Pipe(0.1, 10.0); // radius, length

Tank t1= new Tank(1.0, 1.0, 0.04);

Tank t2;

t0= Tank

0.5 4.0 0.04

p= Pipe

t1= Tank

1.0 1.0 0.04

0.1 10.0

t2=

Objects and Names
0= new Tank(0.5, 4.0, 0.04); Tank t

Pipe p= new Pipe(0.1, 10.0); // radius, length

Tank t1= new Tank(1.0, 1.0, 0.04);

Tank t2;

t2= t1;

7

t0= Tank

0.5 4.0 0.04

p= Pipe

t1= Tank

1.0 1.1 0.04

0.1 10.0

t2=
1.0

Objects and Names
nk t0= new Tank(0.5, 4.0, 0.04); Ta

Pipe p= new Pipe(0.1, 10.0); // radius, length

Tank t1= new Tank(1.0, 1.0, 0.04);

Tank t2;

t2= t1;

t2.setRadius(1.1); // Easy to do accidentally

Pipe, Pipe2 class
ss Pipe { // Simple Pipe class ppublic cla

 private double radius;

 private double length;

 public Pipe(double r, double len) {

 radius = r;

 length = len;

} }

public class Pipe2 { // Pipe attached to two Tanks

 private double length;

 private double radius;

 private Tank tank1; // Same Tank class as lecture 7

 private Tank tank2;

 public Pipe2(double len, double r, Tank t1, Tank t2) {

 length = len;

 radius = r;

 tank1 = t1;

 tank2 = t2;

 }

 public double getSystemVolume() {

 return tank1.getVolume() + tank2.getVolume() +

 length*Math.PI*radius*radius;

} }

8

t0= Tank

0.5 4.0 0.04

t1= Tank

1.0 1.0 0.04

Draw the picture
// Assume t0 and t1 exist

Pipe2 p2= new Pipe2(0.1, 10.0, t0, t1);

Class TankTest
ppublic class TankTest {

 public static void main(String[] args) {

 Tank t0= new Tank(0.5, 4.0, 0.04);

 Tank t1= new Tank(1.0, 1.0, 0.04);

 System.out.println(t0.getVolume()+" "+t1.getVolume());

 Tank t2;

 t2= t1;

 t2.setRadius(1.1); // Easy to do accidentally

 System.out.println(t0.getVolume()+" "+t1.getVolume());

 // Note that t1 s volume changed

 Pipe2 p= new Pipe2(0.1, 10.0, t0, t1);

 double volume= p.getSystemVolume();

 System.out.println("System volume: " + volume);

 }

} // Same Tank class as lecture 7. See download.

9

Summary-classes
•  Classes are a pattern for creating objects
•  Objects have:

–  A name (reference, which is actually a memory location)
–  A data type (their class)

•  We generalize this later; objects can be many types
–  A block of memory to hold their member data, allocated by

the new keyword
–  Member data, usually private, whose values are set by their

constructor, called when new is used
•  Member data can be built-in data types or objects of any kind
•  Member data is initialized to 0, 0.0 or false for primitive types
•  Member data is initialized to null (a keyword) for objects

–  Methods, usually public, to get and set member data
–  Methods, usually public, to do computation, using the

member data

Summary- constructors
•  A constructor is a special method

–  Same name as the class
–  Has no return value (never responds)
–  Generally sets all data members to their initial values
–  Implements the existence behavior
–  Is called once when the object is first created with new i

a program that wants to use it
–  A class can have many constructors, though each must

have different arguments. For example:
 public class Tank {
 private double radius;

 private double height;

 public Tank() { height= 1.0; radius= 2.0;}

 public Tank(double h) { height= h; radius= 2.0}

 public Tank(double h, double r) {

 height= h; radius= r; }

 …

n

 }

10

Building Classes
•  A window company has 3 plants

–  Parts plant A makes wood frames
•  Unit cost $25/frame

–  Parts plant B makes glass
•  Unit cost $5/pane

–  Assembly plant C, adjacent to plant B, assembles
windows
•  Unit assembly cost $12

–  How many classes? How many objects?
•  We ll write the classes for this problem

–  There are many alternatives; we guide you to use a
straightforward one

–  This will not be a general solution. It will work only for one
product, taking one frame and one pane of glass. It may
seem too restrictive, but it s a typical starting point.

–  Use the spiral model to make your solution more
general in a second or third pass.

PartsPlant Class

•  Write the class PPartsPlant for plants producing
one item: frames or glass. Ignore window assembl
for now. This is a recipe for making a plant

 public class PartsPlant {
 // Data fields:

 // Constructor:

// This is all outside the main() method. PartsPlant doesn t
// have and doesn t need main(). Delete it if you have one.

y

11

PartsPlant Class Method

•  Don t write any set methods. The parts pl
data is set by the constructor and we won t
change it after that in this problem.

 // Get methods, for each private field:

s

ant

AssemblyPlant Class
•  We assemble one product from parts produced by

two Plants. Write class AssemblyPlant:
 Eclipse: New->Class: AssemblyPlant

•  This is a recipe for making an AssemblyPlant
 public class AssemblyPlant {

 // Data fields: what is made, what parts plants are used, cost

 // Constructor

12

AssemblyPlant Class Methods

  Don t write any set or get methods other than
the ones below.
 // Computational method (cost)

// Get method to return name of product being

assembled

•

main()
ss, write a main() method to:
 parts plants. This uses their recipes to make

•  In a new cla
–  Create two

objects
–  Create assembly plant. This uses its recipe to make an objec
–  Find the cost of windows. Ask the AssemblyPlant object
–  Output window cost. Use System.out.println()
–  Output the name of the assembled product and its

components. Ask the objects; then use System.out.println()

public class GlassTest {
 public static void main(String[] args) {

 }

t

}}

MIT OpenCourseWare
http://ocw.mit.edu

1.00 / 1.001 / 1.002 Introduction to Computers and Engineering Problem Solving
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

