
1

1.00 Lecture 4

Data Types, Operators

Reading for next time: Big Java: sections 6.1-6.4

Promotion
 Data Type Allowed Promotions
 ddouble None

in
cr

ea
si

ng
 c

ap
ac

ity

 float double

 long float,double

 int long,float,double

 char int,long,float,double

 short int,long,float,double

 byte short,int,long,float,double

  Java performs promotions silently, from lower capacity
 types to higher capacity types, in operations and assignment (=)
  When doing binary operations, Java promotes byte or short to i
•  In all other cases it promotes the smaller to larger capacity

  Don t mess around: just use int (long sometimes) and double

•

• nt

•

2

Casting

•  To convert a data type to a lower capacity type,
you must cast it explicitly
llong s= 1000*1000*1000;

int q= (int) s;

•  You are responsible for making sure the variable
fits in the lower capacity representation
–  If it doesn t, you get no warning, and there is garbage in

the variable (more shortly on this topic)
•  You can cast variables into higher capacity types,

if needed
–  In lecture 1, when computing the fraction grad students,

you could have cast int students to double
double s2= (double) students;

Exercise
•  Create a new project Lecture4
–  Write a class CastTest
–  In the main() method:

•  Declare iints x1=17, x2=20 and x3=12
•  Try to declare an int 2x= 34. What happens?
•  Compute the average of x1, x2 and x3. Be careful.

•  Declare a long big= 9876543210L; (remember the L
•  Try to set int x4 = big and print x4. What happens?
•  Cast big to an int and see what happens.

If you have time:
•  Declare a double small= 2.0 -0.000000000000001

–  Enter number of zeros (14) exactly

•  Try to set int s= small. What happens?
•  Cast small to an int. Is this ok?

)

;

3

Arithmetic operators
Table in precedence order, highest precedence at top

Operators Meaning Example Associativity
++ increment i= d++; x= ++q; Right to left
-- decrement --z; y= (a--) + b;
+ (unary) unary + c= +d;
- (unary) unary – e= -f;
* multiplication a= b * c * d; Left to right
/ division e= f / g;
% modulo h= i % j;
+ addition k= m + n + p; Left to right
- subtraction q= s – t;

% operator defined only for integers

Arithmetic operator exercise

•  Create a class ArithmeticTest in Lecture4
•  Write a main() method in class ArithmeticTest

–  Set the number of 1.00 students to 136
–  Increment this by one, then decrement by one

•  Easy come, easy go, before add or drop date
–  Set the number of 1.001 students to 20
–  Find total students (1.00, 1.001), but increment the 1.00

students by one first, all in one line
–  If we put students in groups of three, how many groups

of three are there?
–  How many students are left over?
–  Use the debugger to see your answers

•  Don t write any System.out.println statements

1

4

:

Precedence, associativity

•  Operator precedence is the order in which
operators are applied. Do exercises on paper
–  Operators in same row have equal precedence

iint i=5; int j= 7; int k= 9; int m=11; int n;

n= i + j * k - m; // n= ?

•  Associativity determines order in which
operators of equal precedence are applied

int i=5; int j= 7; int k= 9; int m=11; int n;

n= i + j * k / m - k; // n= ?

•  Parentheses override order of precedence
int i=5; int j= 7; int k= 9; int m=11; int n;

n= (i + j) * (k – m)/k; // n= ?

Operator exercises

•  What is the value of int n:
–  nn= 1 + 2 - 11 / 3 * 5 % 4; // n= ?

–  n= 6 + 5 - 20 / 3 * 7 % 4; // n= ?

–  int i= 5; int j= 7; int k= 9;
–  n= 6 + 5 - ++j / 3 * --i % k--; //
n= ?

–  i= 5;
–  n= i + ++i; // n= ?

–  // Don t ever do any of these!

5

Integer arithmetic properties

•  Overflows occur from:
–  Division by zero, including 0/0 (undefined)

•  Programmer has responsibility to check and prevent
this

•  Java will warn you (by throwing an exception) if it can t
do an integer arithmetic operation

–  Accumulating results that exceed the capacity of
the integer type being used
•  Programmer has responsibility to check and prevent, as

in zero divides
•  No warning is given by Java in this case

Floating point exercise

•  Write a program to solve the following:
–  You have a 1 meter long bookshelf
–  There are things that are 0.1m, 0.2m, 0.3m, 0.4m and

0.5m long
–  Starting with the smallest thing, place each on the

bookshelf until you can t place any more
–  How many things can you put on the shelf?
–  How much space is left over?

•  Download BookshelfTest0, which has the
skeleton of the code
–  This exercise demonstrates the imprecision of floating

point numbers
–  Java approximates the real number line with 264 integers

6

Floating point exercise
ppublic class BookshelfTest0 {

 public static void main(String[] args) {

 double lengthLeft= 1.0; // Remaining space

 int booksPlaced= 0; // Books on shelf so far

 double length= 0.1; // Length of book

 // Your code here: try to place books of length 0.1, 0.2,

 // 0.3, 0.4, 0.5m on shelf. Loop while enough space

 System.out.println(Books placed: "+ booksPlaced);

 System.out.println("Length left: "+ lengthLeft);

 }

}

Floating point problem

•  How do we fix this?
–  Never use if (a == b) with floats or doubles

•  == is ok with integer types

–  Always use if (Math.abs(a – b) < TOLERANCE)
•  Where TOLERANCE is about 10-6 float or 10-15

double
•  Or a variation on this if the operator is not ==
•  Add TOLERANCE to one side or the other in an

inequality to accommodate the representation error

•  Correct the previous exercise

MIT OpenCourseWare
http://ocw.mit.edu

1.00 / 1.001 / 1.002 Introduction to Computers and Engineering Problem Solving
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

