1.00 Lecture 37

Data Structures:
TreeMap, HashMap

Binary Trees

Level Nodes

@ 0 20

e]) 1 2

\ 2 22
ARAN

k

 Full binary tree has 2k*)-1 nodes

* Maximum of k steps required to find (or not find) a node
* E.g. 220 nodes, or 1,000,000 nodes, in 20 steps!

* In a binary search tree (but not all types of binary tree):
* All nodes to left are smaller than parent
+ All nodes to right are larger than parent
* No ties: each node has a unique key or id

Exercise: Binary Search Tree,
Adding Nodes

Start with an empty binary search tree.
Insert the following nodes while maintaining the
binary search tree property:
_ llbll’ llqll, lltll’ lldll’ Ilall
The first node, “b”, will be the root.

Where will the second node, “q", go?
Draw the tree that results with all 5 nodes

Binary Search Tree (BST)

Binary search trees are used to store large
amounts of data

— High capacity (~2¥)

— Fast access (k steps)

Basic tree operations (insert, find, delete) are not
difficult to implement

— Special cases take some care, as in all data structures

— And keeping the tree balanced, so that all branches are
of comparable length, requires sophistication

— We won’ t implement any tree code; we’ Il use the Java
implementation

Java Tree Implementation

» Trees are efficient if they are balanced
— A balanced tree of depth 20 can hold about 220, or 1,000,000 nodes

— If the tree were unbalanced, in the worst case it would require
1,000,000 levels to hold 1,000,000 nodes, and 1,000,000 steps to
find/insert/delete

» To prevent unbalance, Java uses a sophisticated
binary tree called known as a red-black tree.

— Red-black trees automatically rebalance themselves if one branch
becomes deeper than a sibling.

— Other, similar algorithms include AVL trees, 2-3 trees, ...

Keys, Sets, and Maps

* Every node in a tree has a key, which is a unique identifier
— If a node contains nothing but the key, it is called a TreeSet
— Transit example: gate at Kendall Sq has tree of CharlieCard numbers
— If a node contains a key and a value, it is called a TreeMap.
— Phone book example: key= your name, value= your phone number
— Trees keep nodes in a defined order, as in a phone book (alphabetical)
* The key is used to look up the value.
— The value is extra data contained in the node indexed by the key.
— Nodes must have unique keys to distinguish between them.
* Typical methods in a TreeSet<Integer> are:
- boolean contains (Integer n)
- Integer first()
* The equivalent methods in a TreeMap<Integer, String> are:
— boolean containsKey(Integer n)
- String get(Integer n)
- Integer firstKey()
— String firstValue()

How to Traverse a TreeMap

Given a TreeMap<Integer, String>, how would you
print out every entry in order?

TreeMap<Integer, String> list=
new TreeMap<Integer, String> ()
// add entries
for (Integer n : list.keySet()) {
System.out.println(n + ", " +
list.get(n));

Comparable<T>

» Recall the Comparable interface from sorting

* In trees, all keys must belong to a single class that
implements the Comparable<T> interface
— Oryou can supply a Comparator<T> to the constructor
¢ Comparable<T> has one method:
int compareTo(T other)
— compareTo returns:
* An int < 0 if (this < other)
+ 0 if (other equals this)
« An int > 0 if (this > other)
* Many Java classes already implement Comparable,
e.g. String, Integer

Exercise 1: TreeSet

public class FullName implements Comparable<FullName> {
private final String firstName;
private final String lastName;

public FullName(String £, String 1) {
firstName= f£;
lastName= 1;

}

public String getFirstName () {return firstName;}
public String getLastName () {return lastName;}

public int compareTo(FullName fn) ({
// Complete the compareTo() method
// Order by last name, then first name
// Remember String has a compareTo() method already
// You are comparing pairs of Strings

}

public String toString() {
return firstName + " " + lastName;

}

Exercise 1, p.2

import java.util.*;
public class FullNameTest {

public static void main(String[] args) {

FullName scott= new FullName ("Scott", "Stevens");
FullName ellen= new FullName ("Ellen", "Shipps"):;
FullName andrea= new FullName ("Andrea", "Kondoleon")
FullName paul= new FullName ("Paul", "Stevens");

TreeSet<FullName> names= new TreeSet<FullName> () ;
names.add (scott) ;

names.add (ellen) ;

names.add (andrea) ;

names . add (paul) ;

for (FullNamel f : names)
System.out.println (f) ;

Keys and Values

What good is a tree of numbers?

A “key” in a tree is an ordered value, i.e. a key can be
compared with another object of the same type

A node in an ordered binary tree consists of an ordered key
and a value

All the keys in a tree should be of the same type

Tree Map

Each node has a key and a value

Phonebook example:
— Key: name

— Value: phone number
Exercise: Draw the tree map (ordered
alphabetically) with these entries:
— Riley, 3-4445
Stevens, 3-3700
Smith, 5-7201
Jones, 5-5889
Brown, 3-4321

Exercise 2: TreeMap

* We use a TreeMap<FullName, String> to create a
phone book; this code is provided in class PhoneBook
— FullName is the key; String (phone number) is the value
* We use a loop to display a JOptionPane that asks for
a full name, in the format: “firstName lastName”
— Your code will try to look up the phone number for this name
* Use the string method split () to parse the name
— split() takes the delimiter as its argument, e.g., “ ” here (space)
— split() returns an array of Strings
* Use the TreeMap<FullName, String> method
String get (FullName fn)
to return the subscriber entry.
— get() will return the value if the key is found
— get() will return null if the key cannot be found.

PhoneBook. java

import java.util.*;
import javax.swing.JOptionPane;

public class PhoneBook ({
public static void main(String[] args) {
FullNamel scott= new FullNamel ("Scott", "Stevens");

FullNamel ellen= new FullNamel ("Ellen", "Shipps");
FullNamel pizza= new FullNamel (“Michael", "Pizza");
FullNamel paul= new FullNamel ("Paul", "Stevens");

TreeMap<FullNamel, String> phones=
new TreeMap<FullNamel, String>();

phones.put (scott, "617-225-7178") ;
phones.put(ellen, "781-646-2880");
phones.put(pizza, "781-648-2000");
phones.put(paul, "617-498-2142");

whil
St

if

//
//
//
//
//
//

PhoneBook.java, p.2

e (true) {
ring text= JOptionPane.showInputDialog (
"Enter full name");
(text.isEmpty())
break;
Your code here
Parse the full name (“firstName lastName”)

Use the get() method with FullNamel key to retrieve

the String phone number value.
Print out the phone number or “Subscriber unknown”
if get() returns null

Exercise 3: Data Structure Efficiency

If you are searching an unordered list of n
items for an element, on average how many
items will you have to search to find the item:
— If item is present in the list?

— If item is not present in the list?
What happens if the list is ordered?

— If item is present in the list?

— If item is not present in the list?

If the items are stored in a TreeMap how many
items will you have to search on average?

— Whether item is present or not

Can we do better?

Hashing lllustration

keys = { a, b, ¢, d, aa, bb, cc, dd }
Hash function: (sum of chars) % 4
a= 97, b= 98, c= 99, d= 100

—CdO—Gb>—dddD

|
Y

Hash table (hash map)

* Hashing maps each Object to an index in an array of Node references

» The array contains the “first” reference to a linked list of Objects.

* We traverse the list to add or find Objects that hash to that value

* We keep the lists short, so hash efficiency is close to array index lookup

HashMap

* HashMap holds keys and values, similar to

TreeMap
— HashMap like a filing cabinet, in which each folder has a tab
(hash code) and contains a small number of objects (list)
+ HashMap provides constant time lookup no matter
how many elements it contains.
— If we have n= 1,000,000 items, and t is the time to find one
item, then
* LinkedList will take ~500,000t (n/2) to find an item;
« TreeMap will take ~20t (log, n)
* HashMap will take ~t
* Lookup time depends on having a good hashCode
() method and is statistical.

* Elements in a HashMap are NOT ordered by anything
useful. Storage order is by hash code.

Java hashCode ()

Hashing is done in two phases

— hash1function is responsibility of the key class (the data type
being stored in the hash table)

— In the example, hash1 is (sum of characters)

— hash2 function is responsibility of hash table: it takes hash1
and maps it to the number of slots in the hash table

— In the example, hash2 is (% 4)

Hash table class does not know enough to

generate a hash code from a particular object

— hash1 should map objects as evenly as possible to different
hash values

Java Object has int hashCode() method

— Thus all Java objects inherit hashCode()

— Caution: default hashCode () method can return a negative
integer

— We usually take the absolute value of the hashCode ()

hashCode ()

All hashCode () methods must return the same
integer when presented with the same object
if (ol.equals(o2))
ol.hashCode () ==02.hashCode // must be true
— They cannot return a random integer.
— If they did, there would be no way to look up a key once
it had been inserted in the hash table
All hashCode () methods should return a
different integer from a different object

Java classes (String, JButton, etc.) have good
hashCode () methods.

Object has a terrible hashCode () method.

— If you extend Object and you intend to use the new
class as a key in a HashMap, you should override the
hashCode () method

10

equals ()

* equals () method returns true if two objects are
equivalent
- Object class default equals () tests if two objects are at same
memory location. It doesn’ t look at their fields.
» Better equals () than default needed in HashMaps to
find matching objects

+ equals () method in MyClass should use the following
pattern:
public boolean equals (Object other) {
if (this == other) return true;
if (! (other instanceof MyClass)) return false;
MyClass otherOne= (MyClass) other;
if (/*this and otherOne have equivalent fields*/)
return true;
else return false;

Exercise 4: HashPhoneBook

* FullName is the same as used in TreeMap.
+ Copy and rename your PhoneBook solution to
HashPhoneBook

- HashPhoneBook is the same as PhoneBook except it
uses a HashMap instead of a TreeMap.

— Make that one change in your code
* Run HashPhoneBook
— Can you find any subscribers’ numbers? Why not?
* Fix the problem by adding good equals () and
hashCode () methods to FullName.
— Use the pattern from the previous slide for equals()

— Use the String hashCode() method within your
hashCode()

* Test using HashPhoneBook.

11

Exercise 4

public class FullName
implements Comparable<FullName> {
private final String firstName;
private final String lastName;

public FullName(String £, String 1) {
firstName= f; lastName= 1;

}

// Add overrides for versions in Object for:
// public boolean equals(Object o)
// public int hashCode ()

Exercise 5: Which Data Structure?

* In programs that must store and retrieve large
amounts of data, you typically choose between
TreeMap and HashMap

— Hashing is faster but does not keep Objects in order
— Trees are slower but keep Objects in order

* In each of the following cases, select the data
structure(s) most appropriate to the application.
— Planes, runways and gates in a simulation
— Books in a library
— Airline reservations for many passengers
— Events in a data communication system

12

MIT OpenCourseWare
http://ocw.mit.edu

1.00/1.001 / 1.002 Introduction to Computers and Engineering Problem Solving
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

