
1

1.00 Lecture 37

Data Structures:
TreeMap, HashMap

Binary Trees

m
p e

f d v n

Level Nodes
0 20

1 21

2 22

�

k 2k

•  Full binary tree has 2(k+1)-1 nodes
•  Maximum of k steps required to find (or not find) a node

•  E.g. 220 nodes, or 1,000,000 nodes, in 20 steps!
•  In a binary search tree (but not all types of binary tree):

•  All nodes to left are smaller than parent
•  All nodes to right are larger than parent
•  No ties: each node has a unique key or id

2

Exercise: Binary Search Tree,
Adding Nodes

•  Start with an empty binary search tree.
•  Insert the following nodes while maintaining the

binary search tree property:
–  ""b", "q", "t", "d", "a"

•  The first node, b , will be the root.
•  Where will the second node, q , go?
•  Draw the tree that results with all 5 nodes

Binary Search Tree (BST)

•  Binary search trees are used to store large
amounts of data
–  High capacity (~2k)
–  Fast access (k steps)

•  Basic tree operations (insert, find, delete) are not
difficult to implement
–  Special cases take some care, as in all data structures
–  And keeping the tree balanced, so that all branches are

of comparable length, requires sophistication
–  We won t implement any tree code; we ll use the Java

implementation

3

Java Tree Implementation
  Trees are efficient if they are balanced

–  A balanced tree of depth 20 can hold about 220, or 1,000,000 nodes
–  If the tree were unbalanced, in the worst case it would require

1,000,000 levels to hold 1,000,000 nodes, and 1,000,000 steps to
find/insert/delete

a
c

e
h

  To prevent unbalance, Java uses a sophisticated
binary tree called known as a red-black tree.
–  Red-black trees automatically rebalance themselves if one branch

becomes deeper than a sibling.
–  Other, similar algorithms include AVL trees, 2-3 trees, �

•

•

Keys, Sets, and Maps

•  Every node in a tree has a key, which is a unique identifier
–  If a node contains nothing but the key, it is called a TreeSet
–  Transit example: gate at Kendall Sq has tree of CharlieCard numbers
–  If a node contains a key and a value, it is called a TreeMap.
–  Phone book example: key= your name, value= your phone number
–  Trees keep nodes in a defined order, as in a phone book (alphabetical)

•  The key is used to look up the value.
–  The value is extra data contained in the node indexed by the key.
–  Nodes must have unique keys to distinguish between them.

•  Typical methods in a TreeSet<Integer> are:
–  boolean contains(Integer n)
–  Integer first()

•  The equivalent methods in a TreeMap<Integer, String> are:
–  boolean containsKey(Integer n)
–  String get(Integer n)
–  Integer firstKey()
–  String firstValue()

4

How to Traverse a TreeMap

Given a TreeMap<Integer, String>, how would you
print out every entry in order?

TreeMap<Integer, String> list=
 new TreeMap<Integer, String> ();
// add entries
for (Integer n : list.keySet()) {
 System.out.println(n + ", " +
 list.get(n));
}

Comparable<T>

Recall the Comparable interface from sorting
In trees, all keys must belong to a single class that
implements the Comparable<T> interface
–  Or you can supply a Comparator<T> to the constructor
Comparable<T> has one method:

 int compareTo(T other)

–  compareTo returns:
•  An int < 0 if (this < other)
•  0 if (other equals this)
•  An int > 0 if (this > other)

Many Java classes already implement Comparable,
e.g. String, Integer

• 
• 

• 

• 

5

Exercise 1: TreeSet
ic class FullName implements Comparable<FullName> {
private final String firstName;
private final String lastName;

public FullName(String f, String l) {
 firstName= f;
 lastName= l;

publ

 }

 public String getFirstName() {return firstName;}
 public String getLastName() {return lastName;}

 public int compareTo(FullName fn) {
 // Complete the compareTo() method
 // Order by last name, then first name
 // Remember String has a compareTo() method already
 // You are comparing pairs of Strings
 }

 public String toString() {
 return firstName + " " +
 }
}

 lastName;

Exercise 1, p.2
import java.util.*;

public class FullNameTest {

 public static void main(String[] args) {
 FullName scott= new FullName("Scott", "Stevens");
 FullName ellen= new FullName("Ellen", "Shipps");
 FullName andrea= new FullName("Andrea", "Kondoleon");
 FullName paul= new FullName("Paul", "Stevens");

 TreeSet<FullName> names= new TreeSet<FullName>();
 names.add(scott);
 names.add(ellen);
 names.add(andrea);
 names.add(paul);

 for (FullName1 f : names)
 System.out.println(f);

 }
}

6

Keys and Values

What good is a tree of numbers?
•  A “key” in a tree is an ordered value, i.e. a key can be

compared with another object of the same type
•  A node in an ordered binary tree consists of an ordered key

and a value
•  All the keys in a tree should be of the same type

key
value 7

data
2 4

data data

Tree M

•  Each node has a key and a
•  Phonebook example:

–  Key: name
–  Value: phone number

•  Exercise: Draw the tree ma
alphabetically) with these e
–  Riley, 3-4445
–  Stevens, 3-3700
–  Smith, 5-7201
–  Jones, 5-5889
–  Brown, 3-4321

ap

value

p (ordered
ntries:

key = �

value = �

Riley
3-4445

Stevens
3-3700

Smith
5-7201

Jones
5-5889

Brown
3-4321

7

Exercise 2: TreeMap
•  We use a TreeMap<FullName, String> to create a

phone book; this code is provided in class PhoneBook
–  FullName is the key; String (phone number) is the value

•  We use a loop to display a JOptionPane that asks for
a full name, in the format: firstName lastName
–  Your code will try to look up the phone number for this name

•  Use the String method split() to parse the name
–  split() takes the delimiter as its argument, e.g., here (space)
–  split() returns an array of Strings

•  Use the TreeMap<FullName,String> method
String get(FullName fn)

to return the subscriber entry.
–  get() will return the value if the key is found
 – get() will return null if the key cannot be found.

PhoneBook.java
import java.util.*;
import javax.swing.JOptionPane;

public class PhoneBook {
 public static void main(String[] args) {

 FullName1 scott= new FullName1("Scott", "Stevens");
 FullName1 ellen= new FullName1("Ellen", "Shipps");
 FullName1 pizza= new FullName1(Michael", "Pizza");
 FullName1 paul= new FullName1("Paul", "Stevens");
 TreeMap<FullName1,String> phones=
 new TreeMap<FullName1,String>();

 phones.put(scott, "617-225-7178");
 phones.put(ellen, "781-646-2880");
 phones.put(pizza, "781-648-2000");
 phones.put(paul, "617-498-2142");

8

PhoneBook.java, p.2
 while (true) {
 String text= JOptionPane.showInputDialog(
 "Enter full name");
 if (text.isEmpty())
 break;
 // Your code here
 // Parse the full name (firstName lastName)
 // Use the get() method with FullName1 key to retrieve
 // the String phone number value.
 // Print out the phone number or Subscriber unknown
 // if get() returns null
 }
 }

}

Exercise 3: Data Structure Efficiency
•  If you are searching an unordered list of n

items for an element, on average how many
items will you have to search to find the item:
–  If item is present in the list?
–  If item is not present in the list?

•  What happens if the list is ordered?
–  If item is present in the list?
–  If item is not present in the list?

•  If the items are stored in a TreeMap how many
items will you have to search on average?
–  Whether item is present or not

•  Can we do better?

9

Hashing Illustration

keys = { a, b, c, d, aa, bb, cc, dd }

Hash function: (sum of chars) % 4

a= 97, b= 98, c= 99, d= 100

0 d bb dd

1 a

2 b aa cc

3 c

Hash table (hash map)
ashing maps each Object to an index in an array of Node references
he array contains the first reference to a linked list of Objects.
e traverse the list to add or find Objects that hash to that value
e keep the lists short, so hash efficiency is close to array index lookup

  H
  T
  W
  W

•
•
•
•

HashMap
•  HashMap holds keys and values, similar to
TreeMap
–  HashMap like a filing cabinet, in which each folder has a tab

(hash code) and contains a small number of objects (list)
•  HashMap provides constant time lookup no matter

how many elements it contains.
–  If we have n= 1,000,000 items, and t is the time to find one

item, then
•  LinkedList will take ~500,000t (n/2) to find an item;
•  TreeMap will take ~20t (log2 n)
•  HashMap will take ~t

•  Lookup time depends on having a good hashCode
() method and is statistical.

•  Elements in a HashMap are NOT ordered by anything
useful. Storage order is by hash code.

10

JJava hashCode()
•  Hashing is done in two phases

–  hash1 function is responsibility of the key class (the data type
being stored in the hash table)

–  In the example, hash1 is (sum of characters)
–  hash2 function is responsibility of hash table: it takes hash1

and maps it to the number of slots in the hash table
–  In the example, hash2 is (% 4)

•  Hash table class does not know enough to
generate a hash code from a particular object
–  hash1 should map objects as evenly as possible to different

hash values
•  Java Object has int hashCode() method

–  Thus all Java objects inherit hashCode()
–  Caution: default hashCode() method can return a negative

integer
–  We usually take the absolute value of the hashCode()

hashCode()
•  All hashCode() methods must return the same

integer when presented with the same object
if (o1.equals(o2))
 o1.hashCode()==o2.hashCode // must be true

–  They cannot return a random integer.
–  If they did, there would be no way to look up a key once

it had been inserted in the hash table
•  All hashCode() methods should return a

different integer from a different object
•  Java classes (String, JButton, etc.) have good
hashCode() methods.

•  Object has a terrible hashCode() method.
–  If you extend Object and you intend to use the new

class as a key in a HashMap, you should override the
hashCode() method

11

equals()
•  equals() method returns true if two objects are

equivalent
–  Object class default equals() tests if two objects are at same

memory location. It doesn t look at their fields.
•  Better equals() than default needed in HashMaps to

find matching objects
•  equals() method in MyClass should use the following

pattern:
public boolean equals(Object other) {
 if (this == other) return true;
 if (!(other instanceof MyClass)) return false;
 MyClass otherOne= (MyClass) other;
 if (/*this and otherOne have equivalent fields*/)
 return true;
 else return false;

}

Exercise 4: HashPhoneBook
•  FullName is the same as used in TreeMap.
•  Copy and rename your PhoneBook solution to
HashPhoneBook
–  HashPhoneBook is the same as PhoneBook except it

uses a HashMap instead of a TreeMap.
–  Make that one change in your code

•  Run HashPhoneBook
–  Can you find any subscribers numbers? Why not?

•  Fix the problem by adding good equals() and
hashCode() methods to FullName.
–  Use the pattern from the previous slide for equals()
–  Use the String hashCode() method within your

hashCode()
•  Test using HashPhoneBook.

12

Exercise 4
public class FullName
 implements Comparable<FullName> {
 private final String firstName;
 private final String lastName;

 public FullName(String f, String l) {
 firstName= f; lastName= l;
 }

 …
 // Add overrides for versions in Object for:
 // public boolean equals(Object o)
 // public int hashCode()
}

Exercise 5: Which Data Structure?
•  In programs that must store and retrieve large

amounts of data, you typically choose between
TreeMap and HashMap
–  Hashing is faster but does not keep Objects in order
–  Trees are slower but keep Objects in order

•  In each of the following cases, select the data
structure(s) most appropriate to the application.
–  Planes, runways and gates in a simulation
–  Books in a library
–  Airline reservations for many passengers
–  Events in a data communication system

MIT OpenCourseWare
http://ocw.mit.edu

1.00 / 1.001 / 1.002 Introduction to Computers and Engineering Problem Solving
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

