
2/11/12

1

1.00 Lecture 36

Data Structures:
Linked lists

Reading for next time: Big Java: 16.5-16.6

Lists as an Abstract Data Type

A list is a collection of elements that has an
order.
–  It can have arbitrary length.
–  You should be able to efficiently insert or

delete an element anywhere.
–  You should be able to go through the list in

order an element at a time.

2/11/12

2

A Interface
iimport java.util

List
.*;

public interface List {

 public boolean isEmpty();

 public void addFirst(Object o);

 public void addLast(Object o);

 public void add(int n, Object o); // Only in download

 public boolean contains(Object o);

 public Object removeLast()

 throws NoSuchElementException;

 public Object removeFirst()

 throws NoSuchElementException;

 public boolean remove(Object o); // Only in download

 public void clear();

 public int size();

 public void print();

 public ListIterator listIterator(); // Only in download

} // Java s List interface is more extensive than ours

Arrays Don t Work
•  If we used an array:
–  Inserting an element at any place except the

end of the list is very expensive because all
the elements from the point of insertion until
the end must be moved back to make room for
the new entry.

–  There is a similar problem with deletion.
d

a b c e f g h i j k l m

•  For this reason, lists use a linked
implementation.

2/11/12

3

Singly Linked List Diagram

item next

List Node, item numbers are just for show; they re not in the code

first last

Node 0 Node 1 ... Node n null
item next item next item next

Item 0 Item 1 Item n

Singly Linked Lists, 2
•  The LList points to the first Node, and to the last
Node to make it easier to append items.
–  points to means has a reference to.

•  A Node doesn't contain the item.
–  It has a reference to the item, which can be any Object
–  By pointing to, rather than containing the item, we can

have one Node (and List) implementation that works
for all lists, regardless of what object type they hold.

•  The last Node s next data member is null,
indicating the end of the list.

.

2/11/12

4

The Node Nested Class
ppublic class SLinkedList implements List {
 private static class Node { // Pkg access in download

 Object item; // to support visual demo
 Node next;

 Node(Object o, Node n) {
 item = o; next = n;
 }
 }
 . . .

// This example uses nested class Node (static keyword)

// Also, we could use generics (e.g. <T>) but we use just
// Objects for simplicity. Generic version in download.

// Our SLinkedList is simpler than Java LinkedList class
// but uses very similar implementations

The SLinkedList Data Members

 private Node first = null;
 private Node last = null;

 private int length = 0;

•  Only first is necessary.
•  last and length could be found by traversing

the list
–  Having these members and keeping them up to date

makes the methods size() and addXXX() faster.
–  Implementations vary on this point.

2/11/12

5

Exercise 1: Programming Links
SList myList

first last

item next item next item next null

item0 item1 item2

•  Linked lists use references to the components of the list.
•  In SList, you refer to first item on the list (item0) as first.item.

•  How would you refer to the second item on the list if it was present?

•  How could you tell if there was a 2nd item? Write an if statement.

•  How would you refer to the last item on the list?

Beware the Special Case

•  The tricky part about implementing a linked list is
not implementing the normal case for each of the
methods, for instance, removing an object from
the middle of the list.

•  What's tricky is making sure that your methods
will work in the exceptional and boundary cases.

•  For each method, you should think through
whether the implementation will work on
–  an empty list,
–  a list with only one or two elements,
–  on the first element of a list,
–  on the last element of a list.

2/11/12

6

aaddFirst(Object o)

public void addFirst(Object o)

{

 if (first == null) { // If the list is empty

 first = new Node(o , null);

 last = first;

 }

 else {

 first = new Node(o, first);

 }

 length++;

}

addFirst(), before

List

first last

Node 1

Item 1

Node n

Item n

... null
item next item next

2/11/12

7

aaddFirst(), after

List

first last

Node 1

Item 1

Node n

Item n

... null Node 0

Item 0

item next item next item next

aaddFirst(), special case

List

first last

Node 0

Item 0

null

before

List

first last

null

after

item next

2/11/12

8

Exercise 2

•  Download List and SLinkedList
•  Write addLast() in SLinkedList:
–  Draw a picture of the list before and after
–  Handle the special case of a currently empty

list
–  Remember to increment the list length

EExercise 2: addLast(), before

List

irst last

Node 1

Item 1

Node n

Item n

... null Node 0

Item 0

item next item next item next

f

2/11/12

9

Exercise 3
•  Write the print() method
–  Check if list is empty
–  Otherwise walk the list and print out each item

•  Use a while loop

List

first last

Node 0

Item 0

Node n

Item 1 Item n

... nullNode 1
item next item next item next

rremoveFirst(), before

List

first last

Node 0

Item 0

Node n

Item 1 Item n

... null Node 1
item next item next item next

2/11/12

10

rremoveFirst(), after

List

first last

Node 0

Item 0

Node n

Item 1 Item n

... null Node 1
item next item next item next

rremoveFirst()

public Object removeFirst()

 throws NoSuchElementException

{

 if (first == null) // if list is empty

 throw new NoSuchElementException();

 else {

 Node t = first;

 first = first.next;

 // if list had 1 element and is now empty

 if (first == null)

 last = null;

 length--;

 return t.item;

 }

}

2/11/12

11

rremoveFirst(), special case

List

first last

Node 0

Item 0

null

before

List

first last

Node 0

Item 0

null

after

item next item next

Exercise 4
•  Write removeLast()
–  We give you pictures of the list before and

after removing the last element
–  We give you the special cases where the list

currently has:
•  No elements
•  One element

–  You only need to write the standard case
•  Find the Node before the last Node; it will become

the last Node
•  Set its next field to null
•  Return the last item (removeLast() returns an Object)
•  Remember to decrement list length

2/11/12

12

rremoveLast(), before

List

first last

Node 0

Item 0

Node 2

Item 1 Item 2

null Node 1
item next item next item next

rremoveLast(), after

List

first last

Node 0

Item 0

Node 2

Item 1 Item 2

null Node 1

t t

x x
null

return

item next item next item next

x

2/11/12

13

Exercise 4
 public Object removeLast()

 throws NoSuchElementException {

 if (first == null) // Empty list

 throw new NoSuchElementException();

 else if (first == last) { // 1 element in list

 Node t= first;

 first= last= null;

 length= 0;

 return t.item;

 }

 else {

 // Your code here (remove return null;)

 }

 }

 }

contains()
 public boolean contains(Object o) {

 boolean found= false;

 if (first == null)

 return false;

 Node t= first;

 while (t != null) {

 if (t.item.equals(o)) {

 found= true;

 break;

 }

 t= t.next;

 }

 return found;

 }

2/11/12

14

Other methods
 public int size() {

 return length; }

 public boolean isEmpty() {

 return(first == null); }

 public void clear() {

 first = last = null;

 length = 0;

 }

// Note that we ve implemented a double ended queue:

// elements can arrive or leave at front or rear

// Download and run ListTest to use your SLinkedList

// Generic version of linked list in download:

// List, ListIterator, ListTest, SLinkedListG

Exercise 5
Download:
–  SLinkedListApp, SLinkedListView, ListUtil, Screen,

ListIterator, ListIteratorView
Rename or copy your SLinkedList to
SLinkedList1
–  Copy: Highlight SLinkedList in explorer, ctrl-C, ctrl-V,

type new name
–  Rename: Highlight SLinkedList in explorer, right click,

Refactor-> Rename, type new name
Run SLinkedListApp and experiment
–  Enter one- or two-digit integers as the items in the list
–  Remove and double aren t implemented
–  We don t cover ListIterator, though you can try it

•  Iterators are a generic interface to manage many data
structures

• 

• 

• 

2/11/12

15

Java LinkedList class
Implements Java List interface
–  More methods than our List interface in lecture:

•  add() [several], addAll(), addFirst(), addLast()
•  removeFirst(), removeLast(), etc.
•  clear(), contains(), indexOf(), size(), get(), set(), etc.
•  push(), pop(), etc. to implement stacks
•  addXXX() and removeXXX() used to implement queues and

dequeues, as well as general lists
•  Choose between an ArrayDeque and LinkedList

implementation for stacks, queues, dequeues

ArrayList also implements List, which we saw much
earlier this semester
–  LinkedList and ArrayList are the commonly used lists.
–  Their efficiencies are different

•  ArrayList is faster for more static data
•  LinkedList is faster more more dynamic (rapidly changing) data

–  See Javadoc for more specialized lists

• 

• 

Java LinkedList Class Example
iimport java.util.*;

public class ListExample {

 public static void main(String[] args) {

 LinkedList<String> sensors= new LinkedList<String>();

 sensors.addFirst("light");

 sensors.addLast("touch");

 sensors.add("slider"); // Adds at end

 for (String s: sensors)

 System.out.println(s);

 System.out.println();

 sensors.remove(0); // Remove at index 0

 sensors.remove("slider");

 for (String s: sensors)

 System.out.println(s);

 } // Catch exceptions to make code robust. Not in example

}

MIT OpenCourseWare
http://ocw.mit.edu

1.00 / 1.001 / 1.002 Introduction to Computers and Engineering Problem Solving
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

