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1.00 Lecture 33 

Numerical Methods: 
Root Finding 

No .java files to upload in today s class; create 
a text file or .java file with roots tool results and 
upload it as your active learning solution 

Reading for next time: Big Java 14.1-14.3 

Root Finding in Nonlinear Equations 
•  Two cases: 

–  One dimensional function: f(x)= 0 
–  Systems of equations (F(X)= 0), where 

•  X and 0 are vectors and  
•  F is an n-dimensional vector-valued function. E.g., 
•  x0x 2

1  + 3x1 = 20 
•  x 3

0  – x 2
1  +x0x1= 5 

•  We address only the 1-D function 
–  In 1-D, we can bracket the root between bounding values 
–  In multidimensional case, it s impossible to bracket the root 

(as we see on the next slide) 
•  (Almost) all root finding methods are iterative 

–  Start from an initial guess 
–  Improve solution until convergence limit satisfied 
–  Only smooth 1-D functions have convergence assured 
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Solve f(x,y)=0 and g(x,y)=0 

If n>2, find intersection of n unrelated zero contour hypersurfaces of dimension n-1 

From Numerical Recipes 

Root Finding Methods 

•  Elementary (pedagogical use only): 
–  Bisection 
–  Secant 

•  Practical  (using the term advisedly): 
–  Brent s algorithm (if derivative unknown) 
–  Newton-Raphson (if derivative known) 
–  Laguerre s method (polynomials) 
–  Newton-Raphson (for n-dimensional problems) 

•  Only if a very good first guess can be supplied 
•  See Numerical Recipes in C  for methods 

–  Library available on  

•
 

Why is this so hard? 
–
 

The computer can t see  the functions. It only has 
function values at a few points. You d find it hard to solve 
equations with this little information also.             Exercise 
(0 to 20). 

Image removed due to copyright restrictions. Figure 9.6.1 Solution of two nonlinear equations in two unknowns.
From Press, William, Saul Teukolsky, et al. Numerical Recipes in C: The Art of Scientific
Computing. Cambridge University Press, 1992. See: http://www.nrbook.com/a/bookcpdf.php.

Athena is MIT's UNIX-based computing
environment. OCW does not provide access to it.   
Can translate or link to Java

http://www.nrbook.com/a/bookcpdf.php
asi122
Line
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Root Finding Preparation 
Before using root finding methods: • 
–  Try to solve the equation(s) analytically. May be possible 

•  Use Mathematica, etc. to check for analytical solutions 
–  Graph the equation(s): Matlab, etc. 

•  Are they continuous, smooth; how differentiable? 
–  Linearize the equations and use matrix methods to get 

approximate solutions 
–  Approximate the equations in other ways and solve 

analytically 
–  Bracket the ranges where roots are expected 

•  For fun, look at f (x) = 3x2 + (1/π 4 ) ln[(π − x)2 ]+1
–  Plot it at 3.13, 3.14, 3.15, 3.16; f(x) is around 30 
–  Well behaved except at x= ππ 
–  Dips below 0 in interval x= π +/- 10-667 

–  This interval is less than precision of doubles 
•  You ll never find these two roots numerically 

–  This is in Pathological.java: experiment with it later 

Bisection 
ction •  Bise

–  Interval passed as arguments to method must be 
known to contain at least one root 

–  Given that, bisection always  succeeds 
•  If interval contains two or more roots, bisection finds one 
•  If interval contains no roots but straddles a singularity, 

bisection finds the singularity 
–  Robust, but converges slowly 
–  Tolerance should be near machine precision for 

double (about 10-15) 
•  When root is near 0, this is feasible 
•  When root is near, say, 1010 ,this is difficult: scale  

–  Numerical Recipes, p.354 gives the basic method 
•  Checks that a root exists in bracket defined by arguments 
•  Checks if f(midpoint) == 0.0 (within some tolerance) 
•  Has limit on number of iterations, etc. 
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Bisection 
x1 x2 m 

f(x)= x2 - 2 

-8          -6          -4         -2           0           2           4           6           8 

f(x1)*f(m) > 0, so no root in [x1, m] 

f(m)*f(x2) < 0, so root in [m, x2]. Set x1=m 

Assume/analyze only a single root in the interval (e.g., [-4.0, 0.0]) 

Bisection 
x1 x2 m 

f(x)= x2 - 2 

-8          -6          -4         -2           0           2           4           6           8 

f(m)*f(x2) > 0, so no root in [m, x2] 

f(x1)*f(m) < 0, so root in [x1, m].  Set x2= m 
 
Continue until (x2-x1) is small enough 
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Function Passing  Again 
// MathFunction is interface with one method 

public interface MathFunction { 

    public double f(double x); 

}  

 

 

 

 

// Quadratic implements the interface 

public class Quadratic implements MathFunction { 

    public double f(double x) { 

        return x*x - 2;     

    } 

} 

Bisection- Simple Version 
public class BisectSimple { 

  public static double bisect(MathFunction func, double x1, 

    double x2, double epsilon) { 

        double m; 

        // Rare case of double loop variables being ok 

        for (m= (x1+x2)/2.0; Math.abs(x1-x2) > epsilon; 

    m= (x1+x2)/2.0) 

            if  (func.f(x1)*func.f(m) <= 0.0) 

                x2= m;       // Use left subinterval 

            else 

                x1= m;       // Use right subinterval 

        return m; 

  } 

 

  public static void main(String[] args) { 

   double root= BisectSimple.bisect(new Quadratic(), -1.0, 8.0, 1E-15); 

   System.out.println("Root: " + root); 

   System.out.println( Sqrt:  + -Math.sqrt(2.0));  // As a check 

  } 

} 
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Bisection- NumRec Version 
ppublic class RootFinder {         // NumRec, p. 354 

    public static final int JMAX= 100;  // Max no of bisectio

    public static final double ERR_VAL= -10E10;   

   

    public static double rtbis(MathFunction func, double x1, 

      double x2, double xacc) { 

        double dx, xmid, rtb; 

        double f= func.f(x1); 

        double fmid= func.f(x2); 

        if (f*fmid >= 0.0) { 

            System.out.println("Root must be bracketed"); 

            return ERR_VAL; } 

        if (f < 0.0) {      // Orient search so f>0 lies at x+dx 

            dx= x2 - x1; 

            rtb= x1; } 

        else { 

            dx= x1 - x2; 

            rtb= x2; } 

        // All this is preprocessing ; loop on next page         

ns 

Bisection- NumRec Version, p.2 
        for (int j=0; j < JMAX; j++) { 

            dx *= 0.5;  // Cut interval in half 

            xmid= rtb + dx;  // Find new x 

            fmid= func.f(xmid); 

            if (fmid <= 0.0)  // If f still < 0, move 

                rtb= xmid;  // left boundary to mid 

            if (Math.abs(dx) < xacc || fmid == 0.0) 

                return rtb; 

        } 

        System.out.println("Too many bisections"); 

        return ERR_VAL; 

    }   

    // Invoke with same main() but use RootFinder.rtbis() 

       

    // This can be faster than the simple version, 

    // requiring fewer function evaluations  

    // It s also more robust, checking brackets, limiting 

    // iterations, and using a better termination criterion. 

    // Error handling should use exceptions (we don t here) 

    // Can use as black box , like classes in java.util, etc. 
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Exercise: Bisection 

•  Download Roots 
•  Use the bisection application in Roots to explore 

its behavior with the 5 functions 
–  Choose different starting values (brackets) by clicking at 

two points along the x axis; red lines appear 
–  Then just click anywhere. Each time you click, bisection 

will divide the interval; a magenta line shows the middle 
–  When it thinks it has a root, the midline/dot turns green 
–  The app does not check whether there is a zero in the 

bracket, so you can see what goes wrong� 
–  Record your results; note interesting or odd behaviors 
–  Roots  is persnickety:  

•  It throws away any segment with f*f >=0. It looks at both sides. 

Newton s Method 
•  Based on Taylor series expansion: 

f (x+δ ) ≈ f (x)+ f '(x)δ + f ' '(x)δ 2 / 2+ ...
–  For small increment and smooth function, 

higher order derivatives are small and                    f (x +δ ) = 0
implies δ = − f (x) / f ' (x)

–  If high order derivatives are large or first 
derivative is small, Newton can fail miserably 

–  Converges quickly if assumptions met 
–  Has generalization to n dimensions that is one 

of the few available 
–  See Numerical Recipes for safe  Newton-

Raphson method, which uses bisection when 
first derivative is small, etc.  
•  rtsafe, page 366; Java version in your download 
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Newton s Method 

f(x) 

f (x) 

Initial guess of root 

Newton s Method Pathologies 
f (x) ~ 0 

f(x) 

Initial guess of root 

1 

 
Infinite cycle 

2
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Newton

public class Newton {    // NumRec, p. 365 

    public static double newt(MathFunctionNewton func, double a, 

       double b, double epsilon) { 

        double guess= 0.5*(a + b);  // No real bracket, only guess 

        for (int j= 0; j < JMAX; j++) { 

            double fval= func.fn(guess); 

            double fder= func.fd(guess); 

            double dx= fval/fder; 

            guess -= dx; 

            System.out.println(guess); 

            if ((a - guess)*(guess - b) < 0.0) { 

                System.out.println("Error: out of bracket"); 

                return ERR_VAL;  // Conservative 

            }   

            if (Math.abs(dx) < epsilon) 

                return guess; 

        } 

        System.out.println("Maximum iterations exceeded"); 

        return guess; 

    }   

s Method 

Newton s Method, p.2 
    public static int JMAX= 100; 

    public static double ERR_VAL= -10E10; 

 

    public static void main(String[] args) { 

        double root= Newton.newt(new Quad(), -1.0, 8.0, 1E-15); 

        System.out.println("Root: " + root); 

    } 

}   // End Newton 

 

public class Quad implements MathFunctionNewton { 

    public double fn(double x) { 

        return x*x - 2; 

    } 

    public double fd(double x) { 

        return 2*x;    }   } 

 

public interface MathFunctionNewton { 

    public double fn(double x);      // Function 

    public double fd(double x);   }  // 1st derivative 
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Exercise 
•  Use Newton s method application in 

Roots to experiment with the 5 functions 
–  Choose starting guess by clicking at one point along the 

x axis; red line appears 
–  Then just click anywhere. When you click, a magenta 

tangent line displays 
–  Click again, and the intersection of tangent and x axis is 

found, and the guess (red line) moves 
–  When it thinks it has a root, the line/dot turns green 
–  The app does not check whether there is a zero in the 

limits, so you can see what goes wrong� 
–  Record your results; note interesting or odd behaviors 

Secant Method 
•  For smooth functions: 

–  Approximate function by straight line 
–  Estimate root at intersection of line with x axis 

•  Secant method: 
–  Uses most recent 2 points for next approximation line 
–  Does not keep root bracketed 
–  False position  variation keeps root bracketed, but is slower 

•  Brent s method is better than secant and should be the 
only one you really use: 
–  Combines bisection, root bracketing and quadratic rather than 

linear approximation 
–  See p. 360 of Numerical Recipes. Java version is in your 

download. 
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Secant Method 

b 

1 

a 

Bracket (contains zero) 

Secant Method 

1 

 

b 

a
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Secant Method 

Both points defining new line 
are above x axis and thus don t 
bracket the root 

1 

2 

a 

b 

c 

Secant Method 

1 

2 

a 

b 

c 

d 



2/11/12 

13 

Secant Method 

Now the points bracket the root 
(above, below x-axis) but this  
isn t required 

1 

2 

3 

a 

b 

c 

d 

Secant Method 

2 

3 

1 

a 

b 

c 

d 

e 
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Exercise 
•  Use secant method application in Roots to 

experiment with the 5 functions 
–  Choose different starting values by clicking at two 

points along the x axis; red and orange lines appear 
–  Then just click anywhere. When you click, a magenta 

secant line displays 
–  Click again, and the intersection of secant and x axis is 

found, and the right and left lines (red and orange lines) 
move 

–  When it thinks it has a root, the midline/dot turns green 
–  The app does not check whether there is a zero in the 

limits, so you can see what goes wrong� 
–  Record your results; note interesting or odd behaviors 
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