
1

1.00 Lecture 3

Operators, Control

Reading for next time: Big Java: sections 5.1-5.4
Skip all the advanced topics
Download Java code (Lecture 4 on Web site) for next class

main()

•  In each Java program there is a just a single main()

method, no matter how many classes there are.
–  The main() method is often in a class that has no other

methods, by convention. It can be in any class, though
some choices would seem unnatural.

•  main() tells Java where to start the program; it s
just a naming convention
–  It could easily have been called startHere()

•  In early examples we have only one class, so it will
seem there s a main() method in each class. Not
so.

•  main() at a later point in the term will be minimalist:
–  main() does the least possible work to get the program

running and then hands off all the remaining work to
objects and their methods.

–  For now, since we haven t covered classes and objects,
we ll do everything in main() for a little while longer.

2

Logical operators
•  Produce results of type boolean
•  Comparisons use 9 operators:
 Equal == Not equal !=
 Less than < Less than or <=

 equal

Greater than > Greater than or >= equal
 Logical and && Logical or ||

Not !

// Example

int c= 0, b= 3;

if (c != 0 && b/c > 5) System.out.println(Buy the stock);

// Short circuit evaluation: quit after answer determined

boolean buy= true;

if (!buy || c == 0) System.out.println(Don t buy the stock);

Assignment operators
•  Assignment is not the same as equality

•  = is not the same as ==
•  Assignment places right hand side into left hand side

•  Assignments are expressions:
 int x, y;

 x= y= 5; // Same as x = (y= 5); associate from R to L

•  Shortcut forms exist:
 int x= 5, y= 3;

 x += y; // Same as x= x + y;

 // This means take current value of x (5), add y (3), and

 // set x to a new value of 8

•  Shortcut forms include +=, -=, *=, /=, %= :
 x /= y; // Same as x= x / y;
 x %= y; // Same as x= x % y; % gives remainder

•  Other shortcut forms are ++ and -- :
 x++; // Same as x= x + 1;
 y= --x; // Same as x= x-1; y = x;

3

Operator exercise
•  Create a new project Lecture3
•  Create a new class VelocityTest with a main method

–  We will compute train velocities from Boston to New York
(which are 225 miles apart) with various improvements

–  On the very first line of your program write:
import javax.swing.*; // Allow GUI input

–  Accept an int input from the user, in main():
 String input= JOptionPane.showInputDialog("Enter time");

 int time= Integer.parseInt(input); // Enter 4 (hrs)

–  Define double d= 225; // Miles
–  Decrease d by 25 // Shorten route thru realignment
–  Compute velocity v
–  Print whether v > 60: System.out.println(v>60? +______);

•  If you have time to do these steps (no ifs required):
–  Decrement time by 1 and recompute v // Faster trains
–  Print whether v > 60 and d < 225
 – Print whether v > 70 or d < 175 or time <= 3

Control structures: branch
General form Example

if (boolean) if (psgrs == seats)
 statement; carFull= true;

if (psgrs >= seats) {
 carFull= true;
 excess= psgrs - seats; }

if (boolean) if (psgrs >= seats) {

 statement1; carFull= true;

else excess= psgrs - seats; }

 statement2; else

 carFull= false;

if (boolean1) if (psgrs < seats)

 statement1; carFull= false;

� else if (psgrs == seats) {

else if (booleanN) carFull= true;

 statementN; excess= 0; }

else else {

 statement; carFull= true;

 excess= psgrs - seats; }

There are no semicolons after if or else clauses

4

Control exercise
reate a class ControlTest with a main method
rite in main():
  Declare and initialize five double variables d, s, p, a and b
•  d= 100
•  s= 50
•  p = 10
•  a= .1
•  b= .2

  Then write code so that:
•  If demand d > supply s, raise price p by a*(d-s)
•  If demand == supply, do nothing
•  If demand d < supply s, lower price p by b*(s-d)

  Use the debugger to step through your program:
•  Set breakpoint at first executable line in main()
•  Run-> Debug As-> Java Application

  If you have extra time, read s from a JOptionPane

•  C
•  W

–

–

–

–

Control structure: iteration
General form Example

while (boolean) while (balance < richEnough) {
 statement; years++;

 balance *= (1+ interestRate);
}

do do {
 statement; years++;
while (boolean); balance *= (1+ interestRate);
// Always executes stmt at least once } while (balance < richEnough);

for (start_expr; end_bool; cont_expr) for (years= 0; balance < richEnough;
 statement; years++) {

 balance *= (1+ interestRate);
}

There are no semicolons after while, do or for clauses

5

for loops

for (start_expr; end_bool; cont_expr) for (yrs= 0; yrs < 20; yrs++)
 statement; balance *= (1 + rate);

is equivalent to:

start_expr; yrs= 0;
while (end_bool) { while (yrs < 20) {
 statement; balance *= (1+rate);
 cont_expr; yrs++;
} }

Iteration exercises

•  Create a class IterationTest
–  Exercise 1: Write code in main() that prints out every

third number between 11 and 47, including 11 and 47.
–  Exercise 2: Also print out whether each number output

is odd or even.
•  Use the remainder (%) operator. If remainder is 0 after

dividing by 2, number is even; otherwise it s odd.
–  Remember to declare the variables you use in your

loops before you loop (e.g., int i;)
•  If you finish, look at the control example that

follows
–  Find the bug

6

Control example

Solve ax2 + bx + c= 0
Input a, b and c

discriminant = b*b - 4.0*a*c

No No discriminant < 0 discriminant ≅ 0

Yes Yes

Print Sorry, no real root root = - 0.5 * b / a root = (-b + √discriminant) / 2*a
root2 = (-b - √discriminant) / 2*a

Print root Print root
Print root2

End program

Control example
iimport javax.swing.*; // To support simple input

public class Control { // Quadratic formula

 public static void main(String[] args) {

 final double TOL= 1E-15; // Constant (use final)

 String input= JOptionPane.showInputDialog("Enter a");

 double a= Double.parseDouble(input);

 input= JOptionPane.showInputDialog("Enter b");

 double b= Double.parseDouble(input);

 input= JOptionPane.showInputDialog("Enter c");

 double c= Double.parseDouble(input);

 double discriminant= b*b - 4.0*a*c;

 if (discriminant < 0)

 System.out.println("Sorry, no real root");

 else if (Math.abs(discriminant) <= TOL) {

 double root= -0.5 * b / a;

 System.out.println("Root is " + root); }

 else { // Redefine root ; blocks have own scopes

 double root=(-b + Math.sqrt(discriminant))/ (2.0*a);

 double root2=(-b- Math.sqrt(discriminant))/ (2.0*a);

 System.out.println("Roots: " + root + , " + root2); }

 System.exit(0); } }

7

Control example
•  The previous program has a deliberate, subtle

bug
–  Can you see it?
–  Is it likely that you d find it by testing?
–  Is it likely you d find it by using the debugger and

reading the code?
•  Fix the error by rearranging the order of the if-

else clauses
•  By the way, this is a terrible way to solve a

quadratic equation—see Numerical Recipes,
section 5.6

•  A note on format: we compress code examples to
fit on slides, by putting multiple }}} on one line,
for example. Don t do this in your code; use
Eclipse to indent and format well. (ctrl-A, ctrl-I)

MIT OpenCourseWare
http://ocw.mit.edu

1.00 / 1.001 / 1.002 Introduction to Computers and Engineering Problem Solving
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

