
1

1.00 Lecture 21
Drawing complex objects:

2D API
2D Transformations

Reading for next time: None

Clock, revisited
•  We ll use the model-view-controller version of

the clock and draw with the 2D
programming interface):

API (application

•  Download ClockController, ClockModel, ClockView
© Oracle. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse

2

Clock View with 2D API

iimport java.awt.*;

import javax.swing.*;

import java.awt.geom.*;

public class ClockView extends JPanel {

 private ClockModel model;

 private static final double CD= 200; // Clock diameter

 private static final double X= 100; // Dist from upper lh corner

 private static final double Y= 50; // Dist from upper lh corner

 private static final double XC= X + CD/2; // Clock center x

 private static final double YC= Y + CD/2; // Clock center y

 private static final double HR= 0.3*CD; // Size of hour hand

 private static final double MI= 0.45*CD; // Size of minute hand

 public ClockView(ClockModel cm) {

 model = cm;

 }

// Continued

Clock View with 2D API, p.2
 public void paintComponent(Graphics g) {

 super.paintComponent(g);

 Graphics2D g2 = (Graphics2D) g; // Cast g to g2 context

 double minutes= model.getMinutes();

 double hourAngle = 2*Math.PI * (minutes - 3 * 60) / (12 * 60);

 double minuteAngle = 2*Math.PI * (minutes - 15) / 60;

 Ellipse2D e = new Ellipse2D.Double(X, Y, CD, CD);

 Line2D hr= new Line2D.Double(XC, YC, XC+(HR*Math.cos(hourAngle)),

 YC+ (HR * Math.sin(hourAngle)));

 Line2D mi= new Line2D.Double(XC, YC, XC+

 (MI* Math.cos(minuteAngle)), YC+ (MI * Math.sin(minuteAngle)));

 g2.setPaint(Color.BLUE);

 BasicStroke bs= new BasicStroke(5.0F,

 BasicStroke.CAP_BUTT, BasicStroke.JOIN_BEVEL);

 g2.setStroke(bs);

 g2.draw(e);

 g2.draw(hr);

 g2.draw(mi);

 }

}

3

Exercise 1
•  Add the two lines and arc in ppaintComponent() to

create the picture shown in the first slide
–  Line2D.Double(double x0, double y0, double x1,
double y1)

•  Creates a line from (x0, y0) to (x1, y1)
•  Make your line length = clock diameter / 4

–  Arc2D.Double(double x, double y, double w,
double h, double start, double extent,
int type)

y •  Creates an arc with upper left hand corner (x,y), width w and
height h. These first 4 arguments are the same as an ellipse,

0° and allow space for a 360 degree arc
•  Start is the start angle, in degrees. (Go counterclockwise)
•  Extent is the angle of the arc, in degrees w
•  type is a style; use Arc2D.OPEN

•  Optional: Draw the hour and minute hands in
different colors and different line widths.

x,

h

Affine Transformations

•  The 2D API provides affine transformations.
–  Affine means linear (of the form y= ax +b)
–  These transform from one coordinate system to another while

retaining straightness and parallelism of lines
•  All affine 2D transformations can be represented by a 3x3

matrix: scaling, rotation, translation, shearing, �
–  These primitive affine transformations can be also combined

•  We usually create a small number of graphic objects
(ellipses, rectangles, etc.) and keep transforming them to
create complex drawings or animations
–  We actually transform the coordinate system, not the objects
–  Thus, all objects on the JPanel appear to be transformed each

time a transform is applied, but we only draw the ones we want
•  A caution: If your drawing is off the JPanel, Java will not

warn you. It s easy to transform objects off the JPanel.

4

Transformations in the 2D API

•  Transformations are represented by instances of
the AAffineTransform class in java.awt.geom

•  Create a new AffineTransform object with its no-
argument (default) constructor

-  AffineTransform at = new AffineTransform();
•  Invoke the following methods (and others):

–  at.scale(double sx, double sy)
–  at.translate(double tx, double ty)
–  at.rotate(double theta)
–  at.rotate(double theta, double x, double y)

•  These methods build a stack of basic transforms:
last in, first applied

Translation

⎡1 0 t
⎢0 1 t⎢
⎢⎣0 0 1

ty

tx

⎤ xx x⎡ ⎤ ⎡ x + t ⎤
⎥ y⎢ ⎥ ⎢
y yy t ⎥= +⎥ ⎢ ⎥ ⎢ ⎥
⎥⎦ ⎢⎣1⎥⎦ ⎢⎣ 1 ⎥⎦

5

Translation Example
To display a RRectanglePanel in a JFrame:
import java.awt.*;

import javax.swing.*;

public class RectangleFrame extends JFrame {

 public RectangleFrame() {

 Container contentPane= getContentPane();

 RectanglePanel panel = new RectanglePanel();

 contentPane.add(panel, BorderLayout.CENTER);

 }

 public static void main(String args[]) {

 RectangleFrame frame = new RectangleFrame();

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.setSize(500,500);

 frame.setVisible(true);

} }

Translation Example
iimport javax.swing.*;

import java.awt.*;

import java.awt.geom.*; // For 2D classes

public class RectanglePanel extends JPanel {

 public void paintComponent(Graphics g) {

 super.paintComponent(g);

 Graphics2D g2= (Graphics2D) g;

 Rectangle2D rect= new Rectangle2D.Double(0,0,50,100);

 g2.setPaint(Color.RED);

 g2.draw(rect); // Original position

 g2.setPaint(Color.BLUE);

 AffineTransform baseXf = new AffineTransform();

 // Shift to the right 50 pixels, down 50 pixels

 baseXf.translate(50,50);

 g2.transform(baseXf);

 g2.draw(rect);

 }

} // Download and run RectangleFrame, RectanglePanel

6

Scaling

x

y

s xx 0 0⎤ ⎡ ⎤ ⎡s ∗
0 s yy 0⎥ ⎢ ⎥ ⎢= ∗s y⎥ ⎢ ⎥ ⎢
0 0 1⎥⎦ ⎢⎣1⎥⎦ ⎢⎣ 1 ⎦

x⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣

Scaling Notes
•  Basic scaling operations take place with respect

to the origin. If the shape is at the origin, it grows.
If it is anywhere else, it grows and moves.

•  sx, scaling along the x dimension, does not have
to equal sy, scaling along the y.

•  For instance, to flip a figure vertically about the x-
axis, scale by sx=1, sy=-1.

•  There is also a shear() transform—see javadoc.

7

Exercise 2: Scaling
•  Modify RectangleFrame, RectanglePanel:
•  First, write code to scale rrect at the origin using
RectanglePanel as a basis.
–  Follow the same steps you saw in the translation

exercise.
–  Instead of translate, invoke the scale method.
–  scale takes two doubles as arguments: the first for

scaling x, the second for y.
•  Next, modify rect so that it is not at the origin.

How does scale act on shapes that aren t at the
origin?
–  Modify the first two arguments, which are the (x,y) of the

upper left-hand corner of the rectangle

Rotation

cos()

sin ()

α

α

α

⎡ ⎤α α− sin () 0 ⎡ x x⎤ cos()α y sin ()

⎢ ⎥α αcos() 0 ⎢ y x⎥ = +sin ()α y cos()
⎢ ⎥ ⎢ ⎥
⎣ ⎦0 0 1 ⎣1⎦ 1

⎡
⎢
⎢
⎣ ⎦

− ⎤
⎥
⎥

8

Exercise 3: Rotation
•  Modify RectangleFrame, RectanglePanel again:
•  Write code to rotate rrect using RectanglePanel

as a basis.
•  Follow the same steps as you did in the scaling

exercise.
–  Invoke baseXf.rotate() with a single argument: the

angle, in radians, to rotate the rectangle.
–  You might find Math.PI or Math.toRadians(double

degrees) useful.
•  To avoid rotating rect completely out of view,

rotate by only a small amount (10 or 20 degrees).
•  How does rotating rect change when rect is at

the origin? When it isn t?
–  Use the 3 argument version of rotate() to experiment:

 at.rotate(double theta, double x, double y)

Composing Transformations

•  Suppose we want to scale point (x, y) by 2 and
then rotate by 90 degrees.

0 1 0 2 0 0
1 0 0 0 2 0
0 0 1 0 0 1 1

x
y

⎛−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

scale rotate

⎞
⎟
⎟
⎟

9

Composing Transformations, 2

Because matrix multiplication is associative, we can
rewrite this as

⎛ ⎡ ⎤0 −1 0 ⎡2 0 0⎤ x
⎜ ⎢ ⎥1 0 0 ⎢0 2 0⎥ y⎜ ⎢ ⎥ ⎢ ⎥
⎜
⎝ ⎠⎢ ⎥⎣ ⎦0 0 1 ⎢⎣0 0 1⎥⎦ ⎣1⎦

⎡ ⎤0 2− 0 ⎡x⎤
⎢ ⎥2 0 0 ⎢ y⎥= ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦0 0 1 ⎢⎣1⎥⎦

⎞ ⎡ ⎤
⎟ ⎢ ⎥
⎟ ⎢ ⎥
⎟ ⎢ ⎥

Composing Transformations, 3
•  Because matrix multiplication does not commute,

the order of transformations matters. This squares
with our geometric intuition.

 1. scale

•  If we invert the matrix, we reverse the

transformation.

1. translate
2. scale

2. translate

10

Transformations and the Origin

•  If we scale or rotate a shape that is not anchored
at the origin, it will translate as well.

•  If we just want to scale or rotate, then we should
translate back to the origin, scale or rotate, and
then translate back.
–  at.rotate(double theta, double x, double y) does this for

rotation
–  You must do it yourself for scale()

Transformations and the Origin, 2

1. translate to origin
2. rotate
3. translate back

11

Compound Transformations

Build a compound transform by
1. Creating a new instance of

AAffineTransform

2. Calling methods to build a stack of basic
transforms: last in, first applied:
–  translate(double tx, double ty)
–  scale(double sx, double sy)

–  rotate(double theta)

–  rotate(double theta, double x,
double y) rotates about (x,y)

 

 

Transformation Example

baseXf = new AffineTransform();

baseXf.scale(scale, -scale);

baseXf.translate(-x, -y);

If we now apply baseXF it will translate first, then scale.
Remember in Java that transforms are built up like a stack,

last in, first applied.
First to be applied

translate

scale

baseXf

12

Exercise 4
•  Modify RectanglePanel

–  Initially, rectangle is 50 by 100, at origin
–  Apply the following transforms:

•  Translate rectangle 50 pixels east, 200 pixels south
•  Scale by factor of 1.5, but leave upper left corner of

rectangle in same position
•  Rotate by 30 degrees clockwise (rotate around the

upper left corner)
–  Draw the original rectangle in red
–  Draw the transformed rectangle in blue
–  Remember to apply transforms in reverse

order. The exercise is a bit sneaky.
–  Remember to translate back to the origin to

scale an object without moving it

MIT OpenCourseWare
http://ocw.mit.edu

1.00 / 1.001 / 1.002 Introduction to Computers and Engineering Problem Solving
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

