1.00 Lecture 21

Drawing complex objects:
2D API
2D Transformations

Reading for next time: None

Clock, revisited

« We'll use the model-view-controller version of
the clock and draw with the 2D API (application
programming interface):

4 7D API Clock i

=lof x|

| Craal || Tick || Reset |12:00

* Download ClockController, ClockModel, ClockView

© Oracle. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse

Clock View with 2D API

import java.awt.¥;
import javax.swing.¥*;
import java.awt.geom.*;

public class Clockview extends
private Clockmodel model;
private static final double
private static final double
private static final double
private static final double
private static final double
private static final double
private static final double

public Clockview(ClockModel
model = cm;
}
// Continued

JPanel {

CD= 200; // Clock diameter

X= 100; // Dist from upper 1h corner
Y= 50; // Dist from upper 1h corner

XC= X + CD/2; // Clock center x

YC= Y + CD/2; // Clock center y

HR= 0.3%*CD; // Size of hour hand
MI= 0.45*CD; // Size of minute hand
cm) {

Clock View with 2D API, p.2

public void paintcomponent(Graphics @) {

super.paintComponent(g);

Graphics2D g2 = (Graphics2D) g;

// Cast g to g2 context

double minutes= model.getMinutes();

double hourAngle

2*Math.PI * (minutes - 3 * 60) / (12 * 60);

double minuteAngle = 2*Math.PI * (minutes - 15) / 60;

Ellipse2D e

new El1ipse2D.Double(X, Y, CD, CD);

Line2D hr= new Line2D.Double(XC, YC, XC+(HR*Math.cos(ChourAngle)),
YC+ (HR * Math.sinChourAngle)));

Line2D mi= new Line2D.Double(XC, YC, XC+
(MI* Math.cos(minuteAngle)), YC+ (MI * Math.sin(minuteAngle)));

g2.setPaint(Color.BLUE);

Basicstroke bs= new BasicStroke(5.0F,
BasicStroke.CAP_BUTT, BasicStroke.JOIN_BEVEL);

g2.setstroke(bs);
g2.draw(e);
g2.drawChr);
g2.draw(mi);

Exercise 1

« Add the two lines and arc in paintComponent() to
create the picture shown in the first slide
- Line2D.bouble(double x0, double y0, double x1,
double yl)
» Creates a line from (x0, y0) to (x1, y1)
» Make your line length = clock diameter / 4
- Arc2D.Double(double x, double y, double w,
double h, double start, double extent,
int type)
» Creates an arc with upper left hand corner (x,y), width w and

\ height h. These first 4 arguments are the same as an ellipse,
—_10° and allow space for a 360 degree arc

» Start is the start angle, in degrees. (Go counterclockwise)
» Extent is the angle of the arc, in degrees
» type is a style; use Arc2D.OPEN

» Optional: Draw the hour and minute hands in
different colors and different line widths.

i

w

Affine Transformations

* The 2D API provides affine transformations.
— Affine means linear (of the form y= ax +b)
— These transform from one coordinate system to another while
retaining straightness and parallelism of lines
« All affine 2D transformations can be represented by a 3x3
matrix: scaling, rotation, translation, shearing, ...
— These “primitive” affine transformations can be also combined
* We usually create a small number of graphic objects
(ellipses, rectangles, etc.) and keep transforming them to
create complex drawings or animations
— We actually transform the coordinate system, not the objects
— Thus, all objects on the JPanel appear to be transformed each
time a transform is applied, but we only draw the ones we want
* A caution: If your drawing is off the JPanel, Java will not
warn you. It’ s easy to transform objects off the JPanel.

Transformations in the 2D API

Transformations are represented by instances of
the AffineTransform class in java.awt.geom

Create a new AffineTransform object with its no-
argument (default) constructor
- AffineTransform at = new AffineTransformQ);

Invoke the following methods (and others):
- at.scale(double sx, double sy)

- at.translate(double tx, double ty)

- at.rotate(double theta)

- at.rotate(double theta, double x, double y)

These methods build a stack of basic transforms:
last in, first applied

Translation

Translation Example

To display a RectanglePanel in a JFrame:

import java.awt.¥*;
import javax.swing.*;

public class RectangleFrame extends JFrame {
public RectangleFrame() {
container contentPane= getContentPane();
RectanglePanel panel = new RectanglePanel();
contentPane.add(panel, BorderLayout.CENTER);
}
public static void main(String args[]) {
RectangleFrame frame = new RectangleFrame();
frame.setbefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setsize(500,500);
frame.setvisible(true);

Translation Example

import javax.swing.¥;
import java.awt.*;
import java.awt.geom.*; // For 2D classes

public class RectanglePanel extends JPanel {
public void paintComponent(Graphics g) {
super.paintComponent(g);
Graphics2Db g2= (Graphics2D) g;
Rectangle2D rect= new Rectangle2D.Double(0,0,50,100);
g2.setPaint(Color.RED);
g2.draw(rect); // original position

g2.setPaint(Color.BLUE);

AffineTransform basexXxf = new AffineTransform();
// shift to the right 50 pixels, down 50 pixels
basexf.translate(50,50);

g2.transform(basexf) ;

g2.draw(rect);

} // bownload and run RectangleFrame, RectanglePanel

Scaling

Scaling Notes

+ Basic scaling operations take place with respect
to the origin. If the shape is at the origin, it grows.
If it is anywhere else, it grows and moves.

» s, scaling along the x dimension, does not have
to equal s, scaling along they.

* For instance, to flip a figure vertically about the x-
axis, scale by s,=1, sy=—1.

* There is also a shear() transform—see javadoc.

Exercise 2: Scaling

* Modify RectangleFrame, RectanglePanel:

* First, write code to scale rect at the origin using
RectanglePanel as a basis.

— Follow the same steps you saw in the translation
exercise.

— Instead of translate, invoke the scale method.
- scale takes two doubles as arguments: the first for
scaling x, the second fory.

* Next, modify rect so that it is not at the origin.
How does scale act on shapes that aren’t at the
origin?

— Modify the first two arguments, which are the (x,y) of the
upper left-hand corner of the rectangle

Rotation

Exercise 3: Rotation

Modify RectangleFrame, RectanglePanel again:

Write code to rotate rect using RectanglePanel
as a basis.

Follow the same steps as you did in the scaling
exercise.

— Invoke basexf.rotate() with a single argument: the
angle, in radians, to rotate the rectangle.

— You might find Math.PI or Math.toRadians(double
degrees) useful.
To avoid rotating rect completely out of view,
rotate by only a small amount (10 or 20 degrees).

How does rotating rect change when rect is at
the origin? When it isn’ t?
— Use the 3 argument version of rotate() to experiment:
at.rotate(double theta, double x, double y)

Composing Transformations

+ Suppose we want to scale point (x, y) by 2 and
then rotate by 90 degrees.

rotate scale

Composing Transformations, 2

Because matrix multiplication is associative, we can
rewrite this as

Composing Transformations, 3

+ Because matrix multiplication does not commute,
the order of transformations matters. This squares
with our geometric intuition.

1. scale l 2. translate

1. transla tel-—|_|

T 2. scale

L1

* If we invert the matrix, we reverse the
transformation.

Transformations and the Origin

» If we scale or rotate a shape that is not anchored
at the origin, it will translate as well.

+ If we just want to scale or rotate, then we should
translate back to the origin, scale or rotate, and

then translate back.
— at.rotate(double theta, double x, double y) does this for
rotation
— You must do it yourself for scale()

Transformations and the Origin, 2

1. translate to origin
2. rotate

% 3. translate back

10

Compound Transformations

Build a compound transform by
1. Creating a new instance of
AffineTransform

2. Calling methods to build a stack of basic
transforms: last in, first applied:

translate(double tx, double ty)
scale(double sx, double sy)
rotate(double theta)

rotate(double theta, double x,
double y) rotates about (x,y)

Transformation Example

basexf = new AffineTransform();
basexf.scale(scale, -scale);
basexf.translate(-x, -y);

If we now apply baseXF it will translate first, then scale.
Remember in Java that transforms are built up like a stack,

last in, first applied.

First to be applied

translate
scale
basexf

11

Exercise 4

* Modify RectanglePanel
— Initially, rectangle is 50 by 100, at origin

— Apply the following transforms:
* Translate rectangle 50 pixels east, 200 pixels south

» Scale by factor of 1.5, but leave upper left corner of
rectangle in same position

* Rotate by 30 degrees clockwise (rotate around the
upper left corner)

— Draw the original rectangle in red
— Draw the transformed rectangle in blue

— Remember to apply transforms in reverse
order. The exercise is a bit sneaky.

— Remember to translate back to the origin to
scale an object without moving it

12

MIT OpenCourseWare
http://ocw.mit.edu

1.00/1.001 / 1.002 Introduction to Computers and Engineering Problem Solving
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

