
2/3/12

1

1.00 Lecture 19

More on Events
Inner Classes

Layout Managers

Reading for next time: 18.3

Java Event Model: Recap

•  How do GUIs interact with users? How do
applications recognize when the user has done
something?

•  In Java this depends on 3 related concepts:
–  Events: objects that represent a user action with the

system
–  Event sources: in Swing, these are components that can

recognize user action, like a button or an editable text
field

–  Event listeners: objects that can respond when an event
occurs

2/3/12

2

Events

•  Events are instances of simple classes (objects)
that supply information about what happened.
–  Instances of AActionEvent have getSource() methods

to return the object that fired the event
–  Instances of MouseEvent have getX() and getY()

methods that will tell you where the mouse event (e.g.,
mouse press) occurred. And so on.

•  The event object is delivered to the event listener
by the operating system and Java Virtual Machine
–  Listener methods are invoked when they receive an

event object from the OS or JVM
–  Your Java code does not explicitly create event objects
–  Your Java code does not call event listeners explicitly

Event Sources

•  Event sources generate events
•  The ones you will be most interested in are

subclasses of JJComponent like JButton and
JComboBox

•  You will use already-written classes as your event
sources

•  Or inherit from them (e.g. SwitchButton inherits
from JButton)
–  There is a class EventSource that you can inherit from

if you want to create a new source type

2/3/12

3

Event Listeners
•  Event listeners

–  An object becomes an event listener when its class
implements an event listener interface

–  The event listener gets called when the event occurs if
we register the event listener with the event source

–  All event listener methods take an event as an argument
•  You may select any object, as long as it

implements ActionListener (or XXXListener), to
be the event listener. You have three options:
–  Use an existing GUI element

•  Make the containing panel listen to its buttons, etc., as in
both examples in class so far. Simple but not ideal.

–  Create instance (object) of new class as listener
–  Create inner class object as listener (covered next)

Exercise

•  There are 5 steps to handling an event.
•  Mark up the next three slides:
–  Circle and label where steps 1, 2, 3, 4 and 5

occur:
•  Step 1: Identify type and source of event
•  Step 2: Identify object to handle event
•  Step 3: Select appropriate listener interface
•  Step 4: Write listener method required by interface
•  Step 5: Register listener with event source

2/3/12

4

Exercise: HHello Application

import javax.swing.*;

import java.awt.event.*;

import java.awt.Font;

public class Hello extends JFrame

 implements ActionListener

{

 private JButton button;

 private int state = 0;

 public static void main (String args[]) {

 Hello hello = new Hello();

 hello.setVisible(true);

 }

The Hello Application, 2

 public Hello() {

 setDefaultCloseOperation(EXIT_ON_CLOSE);

 button = new JButton("Hello");

 button.setFont(new Font("SansSerif",

 Font.BOLD, 24));

 button.addActionListener(this);

 getContentPane().add(button, "Center");

 setSize(200, 200);

 }

2/3/12

5

The HHello Application, 3

 public void actionPerformed(ActionEvent e) {

 if (state == 0) {

 button.setText("Goodbye");

 state++;

 } else {

 System.exit(0);

 }

 }

}

Event Types

  Semantic events vs low-level events
–  Semantic events are a meaningful group of low-level events

•  ActionEvent: user action on object (button click, etc.)
•  AdjustmentEvent: value adjusted (scroll bar, etc.)
•  ItemEvent: selectable item changed (combo box)
•  TextEvent: value of text changed

–  You can often just use ActionEvent, especially if a button is
present to initiate program operation
•  In actionPerformed(), you can then get the values of all other

Swing components.
–  Low level events:

•  Mouse press, mouse move, key release, etc.
•  There are many of these

•

2/3/12

6

Event Types, Interfaces
Event type Interface name Methods in interface

ActionEvent ActionListener void actionPerformed(ActionEvent e)

AdjustmentEvent AdjustmentListener void adjustmentValueChanged(AdjustmentEvent e)

ItemEvent ItemListener void itemStateChanged(ItemEvent e)

TextEvent TextListener void textValueChanged(TextEvent e)

ComponentEvent ComponentListener void componentHidden(ComponentEvent e)
void componentMoved(ComponentEvent e)
void componentResized(ComponentEvent e)
void componentShown(ComponentEvent e)

FocusEvent FocusListener void focusGained(FocusEvent e)
void focusLost(FocusEvent e)

KeyEvent KeyListener void keyPressed(KeyEvent e)
void keyReleased(KeyEvent e)
void keyTyped(KeyEvent e)

ContainerEvent ContainerListener void componentAdded(ContainerEvent e)
void componentRemoved(ContainerEvent e)

WindowEvent WindowListener (7 methods—see text or Javadoc)

MouseEvent MouseListener, 2 more (7 methods—see text or Javadoc)

Clock, from last time
iimport java.awt.*;
import javax.swing.*;

public class ClockFrame extends JFrame{
 public ClockFrame() {

 super("Clock Test"); // Or setTitle(…)
 setSize(300, 200);
 ClockPanel clock = new ClockPanel();
 Container contentPane= getContentPane();
 contentPane.add(clock, BorderLayout.CENTER);

 }

 public static void main(String[] args) {
 ClockFrame frame = new ClockFrame();
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.setVisible(true);
 }
}

Solution from previous lecture

2/3/12

7

Clock, p. 2
iimport javax.swing.*; import java.awt.*;

import java.awt.event.*; import java.awt.geom.*;

public class ClockPanel extends JPanel implements ActionListener {

 private JButton tickButton, resetButton;

 private JLabel hourLabel, minuteLabel;

 private int minutes = 720; // 12 noon

 public ClockPanel(){

 JPanel bottomPanel = new JPanel();

 tickButton = new JButton("Tick");

 resetButton = new JButton("Reset");

 hourLabel = new JLabel("12:");

 minuteLabel = new JLabel("00");

 bottomPanel.add(tickButton);

 bottomPanel.add(resetButton);

 bottomPanel.add(hourLabel);

 bottomPanel.add(minuteLabel);

 setLayout(new BorderLayout());

 add(bottomPanel, BorderLayout.SOUTH);

 tickButton.addActionListener(this);

 resetButton.addActionListener(this);} Solution from previous lecture

Clock, p.3
 public void paintComponent(Graphics g) {

 super.paintComponent(g);

 Graphics2D g2= (Graphics2D) g;

 Shape e= new Ellipse2D.Double(100, 0, 100, 100);

 g2.draw(e);

 double hourAngle = 2*Math.PI*(minutes- 3*60)/(12*60);

 double minuteAngle = 2*Math.PI * (minutes - 15) / 60;

 Line2D.Double hour= new Line2D.Double(150, 50,

 150 + (int) (30 * Math.cos(hourAngle)),

 50 + (int) (30 * Math.sin(hourAngle)));

 g2.draw(hour);

 Line2D.Double m= new Line2D.Double(150, 50,

 150 + (int) (45 * Math.cos(minuteAngle)),

 50 + (int) (45 * Math.sin(minuteAngle)));

 g2.draw(m);

 } Solution from previous lecture

2/3/12

8

Clock, p.4
 public void setLabels(){ // Doesn't handle midnight

 int hours = minutes/60;

 int min = minutes - hours*60;

 hourLabel.setText(hours+ ":");

 if (min < 10) // Minutes should be two digits

 minuteLabel.setText("0" + min);

 else

 minuteLabel.setText("" + min);

 }

 public void actionPerformed(ActionEvent e) {

 if(e.getSource().equals(tickButton))

 minutes++;

 else // Reset button

 minutes= 720;

 repaint(); // Repaint redraws circle and lines

 setLabels(); // setLabels resets hour, minute text

 }

}

Solution from previous lecture

Inner Classes
You can define an inner class inside another class:
 public class EnclosingClass {

 public class InnerClass1 { ... }

 private class InnerClass2 { ... }

 }

•  Inner class name is the outer class name qualified with the
inner class name: e.g., EnclosingClass.InnerClass1
–  You already saw Rectangle2D.Double (it s static, a slight variation)

•  An inner class is considered to be part of the enclosing class:
–  Make it public if you want methods in other classes to use it
–  Make it private if you only use it in the enclosing class

•  The inner class has access to instance data and methods of
the enclosing class

•  The enclosing class has access to instance data and methods
of the inner class, even if it is private

2/3/12

9

Exercise 1: Inner classes

•  Create a TickButtonListener inner class inside
ClockPanel. Put it after the data members.
–  Same syntax as any other class, but defined inside a class
–  Must implement ActionListener interface
–  Must have actionPerformed() method to increment minutes
–  No constructor or data members needed in inner class

•  Create ResetButtonListener inner class inside
ClockPanel in same way.
–  Its actionPerformed() method sets minutes=720.

•  Create instances (new) of the inner classes and register
them as the listeners for the tick and reset buttons
–  Can do it all in one line, in addActionListener(). Use nnew �

•  ClockPanel no longer implements ActionListener or has
actionPeformed()
–  Remove actionPerformed() method from ClockPanel

Anonymous Inner Classes
•  Shortcut way to define inner classes

–  Used for small, simple classes such as listeners
–  Separates listener from source in a simple way

•  There is no public class declaration
–  The class is defined and the object is created (new) within

the argument to addActionListener()

 // Code fragment for the button within a JPanel

 public class SomePanel extends JPanel {

 private JButton someButton;

 public SomePanel() {

 JButton someButton= new JButton(Some button);

 // Other code…

 someButton.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent ae) {

 // Body of method executed when button pressed

 } }); Creates anonymous object of anonymous inner
 } class that implements ActionListener interface:
 } •  Class has no name/reference

•  Object has no name/reference

2/3/12

10

Anonymous Inner Classes
•  We appear to nnew an interface, which is illegal

–  We are actually creating a nameless class that will only
have a single, nameless instance

•  The new constructor call cannot have arguments*
 addActionListener(

 new ActionListener() { . . . }

);

 // We can t have an explicit constructor-why not?

–  The anonymous inner class has access to its enclosing
class data members and methods, so it doesn t need
arguments.

•  Anonymous inner classes are used when there are
many event sources
–  We write one anonymous listener class per event source
–  This is a clear way to organize complex GUI code

* There is one obscure exception. Anonymous inner classes can
extend a superclass. If so, they can have the superclass arguments.

Exercise 2

•  Copy and rename ClockFrame to ClockFrame2
•  Copy and rename ClockPanel to ClockPanel2
•  Replace both of your inner classes in the

ClockPanel class with anonymous inner classes
–  For each button, create an anonymous inner class

within the addActionListener() line to listen for the
button events.
•  Cut and paste the method bodies from previous inner classes

–  Remove the two inner classes

2/3/12

11

Layout Management

•  Layout management is the process of
determining the size and location of a container's
components.
–  Java containers do not handle their own layout. They

delegate that task to their layout manager, an instance
of another class.

–  Content panes and panels need layout (and a few
others)

•  Each layout manager enforces a different layout
policy.
–  Layout proceeds bottom-up: it finds the size of

individual elements, then sizes their containers until the
frame or panel is sized

BBorderLayout

A border layout lays out a container, arranging and
resizing its components to fit in five regions:
north, south, east, west, and center. Each region
may contain no more than one component, and is
identified by a corresponding constant. -
javadoc

BorderLayout is the default layout manager for
contentPane on JFrame

© Oracle. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse

2/3/12

12

FFlowLayout

A flow layout arranges components in a left-to-right
flow, much like lines of text in a paragraph. Flow
layouts are typically used to arrange buttons in a
panel. It will arrange buttons left to right until no
more buttons fit on the same line. Each line is
centered. - javadoc

 FlowLayout is the default layout manager for JPanel

Layout Management
• If you do not like a container's default layout

manager, you can change it.
 /// Content pane has BorderLayout as default
 CContainer contentPane = getContentPane();

 contentPane.setLayout(new FlowLayout());

 // Flow Layout uses a 1 argument add() method

 panel.add(button); // Order matters

 panel.add(label);

 // JPanel has FlowLayout as default

 JPanel panel = new JPanel();

 panel.setLayout(new BorderLayout());

 // Border Layout uses a 2 argument add() method

 // Can only add one component to each sector

 panel.add(button, BorderLayout.NORTH);

 panel.add(label, BorderLayout.SOUTH);

 // If you want more than one component in a sector, put

 // a panel on the sector and place components on it

© Oracle. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse

2/3/12

13

Other Layout Managers

Using Other Layout Managers
•  To display a component in as much space as it can get

–  BorderLayout
•  To display a few components in a row at their natural size

–  FlowLayout or BoxLayout
•  To display a few components of same size in rows and

columns
–  GridLayout

•  To display a few components in row or column with varying
amounts of space between them
–  BoxLayout

•  To display aligned columns in a form with column of labels
used to describe text fields in adjacent column
–  SpringLayout

•  To display a complex GUI
–  GridBagLayout

© Oracle. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse

2/3/12

14

Exercise 3: Layout and Components
•  Copy your previous solution to new classes
•  Change the layout of the clock:

–  Create a new JPanel and place it at BorderLayout.NORTH
–  Add the hour and minute labels to the top panel
–  Change the y coordinates of the clock drawing in

paintComponent() to allow room for the top panel

© Oracle. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse

MIT OpenCourseWare
http://ocw.mit.edu

1.00 / 1.001 / 1.002 Introduction to Computers and Engineering Problem Solving
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

