
1

1.00 Lecture 17

Introduction to Swing

Reading for next time: Big Java: sections 9.7-9.11
Online hyperlinked Swing tutorial:

http://download.oracle.com/javase/tutorial/uiswing/

Swing
•  Java package of user interface classes for

windows, menus, scroll bars, buttons,
drawing...

•  Independent of hardware and operating system
(as long as they can paint a window)
–  Swing gains independence but loses performance by

not relying on native drawing calls
–  Has Windows, Mac, other look and feel options

•  Supersedes Java Abstract Window Toolkit
(AWT) though it still uses many non-drawing
classes from that package. You will usually:

 iimport java.awt.*;
 import javax.swing.*;

http://download.oracle.com/javase/tutorial/uiswing/

2

The 3 Flavors of GUI Objects
•  Top Level Windows:

–  Containers that are not contained by any other
containers

–  They can be iconified or dragged, and interact with the
native windowing system

–  Example: JJFrame, JDialog

•  JComponents: present information or interact
with the user
–  Examples: labels (JLabel), buttons (JButton), text

fields (JTextField)
–  JFrame and JDialog are not JComponents

•  Containers:
–  Some JComponents are designed to hold other

components, not to present info or interact with the user
–  Examples: JPanel , JScrollPane, Container

Look and Feel, platform
dependent

Interacts
with the
window
system

JFrame has a contentPane,
which is the Container that
will hold your content

Anatomy of a JJFrame

© Oracle. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse

3

Coordinates

x

y

Submit Clear
x

y

0,0

creen

JFrame

Measured in pixels (e.g. 640 by 480, 1024 by 768, etc.)
By tradition, upper left hand corner is origin (0,0)
X axis goes from left to right, y from top to bottom

S

Exercise 1: Empty JFrame

/// Download, read and run this program

import javax.swing.*;

public class SwingTest {

 public static void main(String[] args) {

 // Create new frame

 JFrame frame= new JFrame();

 // Tells program to exit when user closes this frame

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 // Frame has 0 default size; give it a size

 frame.setSize(500, 400); // setSize(int x, int y)

 // Frame invisible by default; make it visible

 frame.setVisible(true);

 }

 // main() ends but Swing thread stays alive

}

// Run the program; see what it draws

4

Frames, Panes and Panels
paint
Component()

y (on JPanel)
or JLabel

x (on
JPanel) Text message Frame

Button JPanel
(on content-
Pane, can beontentPane, many) btained from JFrame JButton

(on JPanel, can be many)

J

c
o

Color
•  Swing has:

–  13 predefined colors: Color.x where x is
 orange, pink, cyan, magenta, yellow, black, blue,
white, gray, lightGray, darkGray, red, green

–  We can create our own colors
 Color ugly= new Color(30, 90, 120);

–  This uses red-green-blue (RGB) values 0-255
–  Color has multiple constructors (see Javadoc)

5

Exercise 2: Panel with Color
/// Continue to write SwingTest

import java.awt.*; // 1. Import AWT

import javax.swing.*;

public class SwingTest {

 public static void main(String args[]) {

 JFrame frame = new JFrame();

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.setSize(500,400);

 Container contentPane= frame.getContentPane(); // No J

 // 2. Create new JPanel object with default constructor

 // 3. Call its setBackground() method with Color yellow

 // 4. Use Container method add() to add panel to

 // contentPane. Panel is 1st argument;

 // BorderLayout.CENTER is 2nd argument

 frame.setVisible(true);

 }

}

How to Do Custom Drawing

•  Standard Swing components like JPanel and
JButton use paintComponent() to draw
themselves.

•  If you want to do custom drawing, extend a
container class, usually JPanel, and override
paintComponent()
–  Don t confuse paintComponent() with
paintComponents() (Note the extra s .)

•  Use calls from the 2D API in paintComponent
() to draw what you want on the JPanel
background.

6

Custom Drawing, cont.
•  To draw on a JPanel, use inheritance:

–  Create a subclass of JJPanel or other component to
do what you want

–  Redefine (override) the paintComponent method in
your subclass (Not paintComponents)

–  paintComponent() has a Graphics object as
argument

–  Graphics object stores data on fonts and colors,
and has drawing methods that you can use

–  Add an object of your subclass to the content pane
•  Java Graphics class can draw lines, ellipses�

–  Very limited: single thickness, no rotation, etc.
–  Java s Graphics2D class is much more functional
–  Swing draws all components using Java classes and

methods in the packages java.awt.* and
java.awt.geom.*.

Exercise 3: AreaPanel
/// 1. Write initial version of class AreaPanel:

import java.awt.*;

import javax.swing.*;

public class AreaPanel extends JPanel {

 public void paintComponent(Graphics g) {

 // Have JPanel paintComponent do default operations

 // such as background color, etc.

 super.paintComponent(g);

 Graphics2D g2= (Graphics2D) g;

 g2.drawString(Area of rectangle", 125, 150);

 // The last two arguments of drawString indicate

 // that the message should be drawn starting at

 // (x,y)= (125,150)

 }

}

// 2. Modify SwingTest main(), and run it:

// Change JPanel panel= new JPanel();

// To AreaPanel panel= new AreaPanel();

// Move setBackground() to the AreaPanel paintComponent()

7

2D Shapes

•  Shape is an interface defined in java.awt, but the
classes that implement Shape are all defined in
java.awt.geom.

•  Shapes all come in two versions, one with high
precision coordinates and one with low, e.g.:
Ellipse2D.Double // high precision
Ellipse2D.Float // low precision

•  Each shape has different constructor arguments,
doubles or floats depending on whether they are
high precision or low.

Creating an Ellipse
•  To create an ellipse in paintComponent() use the

Ellipse2D.Double class in java.awt.geom:
 Shape ellipse= new Ellipse2D.Double(double x,
 double y, double width, double height);
•  x and y define the upper left of the bounding box, width and

height the aspect ratio and dimensions of the ellipse.
•  Tell the Graphics2D object g2 to draw() the ellipse with the

position and dimensions pictured below:
100.0

50.0

300.0

150.0

Shape e= ne
Ellipse2D.D
100,50,300,

g2.draw(e);

w
ouble(
150);

8

Fill Ellipse; Draw Rectangle, Line
•  To fill a shape, substitute the fill() method for draw().
•  If you want to draw in a different color, use the Graphics2D

method using any color as an argument setPaint()

•  To create a rectangle

50.0

300.0

150.0

 Shape rect= new Rectangle2D.Double(double x,
 double y, double width, double height);
•  To create a line
 Line2D li= new Line2D.Double(double x1, double
y , , y)1 double x2 double 2 ;

100.0

2D Shapes Provided in Java

•  Predefined shapes include:
–  Arc2D
–  CubicCurve2D
–  Ellipse2D
–  QuadCurve2D
–  Rectangle2D
–  RoundRectangle2D
–  all with Double and Float versions

•  Line2D is not strictly a Shape because you can only
draw it, not fill it.

•  To draw lines or shapes with greater thickness,
change the pen with setStroke():
–  g2.setStroke(new BasicStroke(3)); // 3 pixels wide

9

Exercise 4: Drawing

•  Add code to AAreaPanel s paintComponent
method to:
–  Create one Ellipse2D, Rectangle2D, and Line2D

object
•  Make the ellipse be a circle

–  Make each object a different color, e.g.,
g2.setPaint(Color.black)

–  Fill the rectangle object; draw the ellipse object
–  Show the area of the ellipse and rectangle, in pixels,

using Graphics2D.drawString()
•  Import java.awt.geom.* to have Ellipse2D, etc.

Fonts
•  Standard constructor:
 Font myFont =
 new Font(String name, int style, int size);

•  Font name: safe approach is to use a logical font
name, one of
–  "SansSerif", "Serif", "Monospaced", "Dialog",
"DialogInput", "Symbol"

•  Four font styles are present: Font.y where y is
–  PLAIN, BOLD, ITALIC
–  Font.BOLD + Font.ITALIC // Combines fonts

•  Size is point size; 12 corresponds to standard
printed text

•  Components that display text (like a JLabel) have a
setFont() method that takes a Font object as an
argument

10

Exercise 5: Font

•  Change the font in AreaPanel to:
–  Monospaced
–  Bold
–  20 point

•  By creating a new Font object
•  And using g2.setFont()
–  Argument is a Font object

Graphics 2D Attributes

•  Much of the power of the 2D API comes from the
user s ability to set attributes of the Graphics2D
object known collectively as the rendering context:
–  public void setStroke(Stroke s)// BasicStroke b
–  public void setPaint(Paint p) // Color c
–  public void setFont(Font f)
–  // Combine new pixels with existing pixels
 public void setComposite(Composite c)
–  // Appearance: antialiasing, etc.
 public void setRenderingHints(Map m)
–  // Scale, rotate, translate (covered later)
 public void setTransform(Transform t)

•  Look these up in Javadoc; you should be getting
comfortable using it

MIT OpenCourseWare
http://ocw.mit.edu

1.00 / 1.001 / 1.002 Introduction to Computers and Engineering Problem Solving
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

