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1.00 Lecture 15 

Interfaces, or 
Wimpy Classes 

Reading for next time: Big Java: sections 12.1-12.5 

Interfaces 

•  Interface is an abstract base class with only: 
–  Abstract methods 
–  Constant (static final) data members 

•  Interface is thus a wimpy superclass : just a set 
of abstract methods a subclass must implement 
–  They are a to-do list for a subclass that implements them 

•  A subclass that inherits from the interface must 
implement all of its (abstract) methods, just as 
any (concrete) subclass inheriting an abstract 
method must implement it 
–  You will use interfaces frequently in Swing (GUI), 

sensors, numerical methods and data structures 
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Interfaces, p.2 
•  Interface (wimpy class) is like an abstract class but: 

–  If Java had only abstract classes, a subclass could only 
inherit from one superclass 

–  Multiple interfaces (wimpy classes) can be implemented 
(inherited) in your class 

–  Interfaces, such as Rotatable, cannot be instantiated 
RRotatable shape1= new Rotatable();           // Error 

–  You can declare objects to be of type interface 
Rotatable shape1;      // OK 

–  They can be names for objects of a class that implements 
the interface. If Rectangle implements Rotatable: 
Rotatable shape1= new Rectangle();            // OK 

–  Interfaces contain only abstract methods and constants 
public interface Rotatable {   

    void rotate(double theta);  // Implicitly public 

    double MAX_ROTATE= 360; }   // Implicitly  

       // public static final 

Abstract Classes vs. Interfaces 

•  Abstract class has •  Interface has 
–  Static and instance –  Only static final data 

data members members (constant) 
–  Concrete and/or –  Only abstract methods 

abstract methods  
–  Single inheritance –  Multiple inheritance 

(via extends) (via implements) 
–  Constructor –  No constructor 
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Interfaces and multiple 
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The MBTA Silver Line to the airport is now built, and it uses dual mode 
buses: electric in the South Station tunnel, and CNG powered the rest 
of the way to the airport. 

Interfaces and multiple 
inheritance 
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Hybrid 

What member data fields will Hybrid have (in C++)? 
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Interfaces and multiple 
inheritance: methods 
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Hybrid 
Which version of getAccel() 
should Hybrid objects invoke? 
Which does super.getAccel() 
call? 
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Interfaces and multiple inheritance 
•  Data members in classes with (C++) multiple 

inheritance can be duplicated in many cases 
–  To prevent this, Java does not allow a class to extend 

more than one class 
–  A class may implement one or more interfaces 
–  Java allows no data members in interfaces, only public 
static final (constant) fields that don t have this 
difficulty 

•  Which method to call in classes with multiple 
inheritance can be ambiguous 
–  Java allows no concrete method bodies in interfaces, 

only abstract methods that don t allow ambiguity 
•  Both extend and implements inherit from a 

superclass 
–  extend from a single full fledged  class 
–  implements from one or many wimpy  classes 
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Java interfaces 

Bus LiquidFuel Electric 

ID 
capacity 
cost 
getAccel(); 

getRange(); 
getEmissionTier(); 

LOW_VOLTAGE 
HIGH_VOLTAGE 
getVoltage(); 

Hybrid 

extends implements 

Hybrid inherits all fields, methods from super class, interfaces 
It must declare range, emissionTier, voltage data members itself 
It must have getRange(), getEmissionTier(), getVoltage(), getAccel() bodies 
Question: What happens if there is a getRange(); in Bus as well? 

Interface exercise 
/// This abstract base class is in your Lecture 15 download 

 

public abstract class Bus { 

 private int ID; 

 private int capacity; 

 private double cost; 

 private static int nextID= 1; 

 

 public Bus(int capacity, double cost) { 

  ID= nextID++; 

  this.capacity = capacity; 

  this.cost = cost; 

 } 

 public abstract double getAccel(); 

 public final int getID() {return ID;} 

 public int getCapacity() {return capacity;} 

 public double getCost() {return cost;} 

} 
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Interface exercise, p.1 

•  Download abstract base class Bus (previous slide) 
–  Data members: ID, capacity, cost 
–  Constructor 
–  Abstract method double getAccel(), other getXXX() methods 

•  Write interface LiquidFuel 
–  In Eclipse: File->New->Interface 
–  Write two method signatures:  

•  double getRange(), int getEmissionTier() 

•  Write interface Electric 
–  In Eclipse: File->New->Interface 
–  Write method signature double getVoltage() 
–  Define constants HIGH_VOLTAGE=600, LOW_VOLTAGE=480 

•  Both are doubles 

Interface exercise, p.2 
•  Write a Hybrid class (File->New->Class, as usual) 

–  extends _______ implements ________, ________  
–  Data members voltage, range, emissionTier (plus inherited) 
–  Write a constructor 
–  Write getRange(), getEmissionTier(), getVoltage(), getAccel() 

•  getAccel() always returns 4.0 
•  Use Eclipse to help you: 

–  After writing the data members, use Source-> Generate 
Constructor Using Fields 

–  Click on the wavy red line under Hybrid and select Add 
unimplemented methods  
•  Eclipse will add the method signatures to your class 
•  It will also add an @Override annotation, which checks that the 

method signature matches the inherited signature 
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Interface exercise, p.3 
•  Write a CNGBus class (a liquid fueled bus) 

–  Extend, implement appropriately 
–  Data members: range, emissionTier (plus inherited) 
–  Write constructor  
–  Implement inherited abstract methods; getAccel() 

returns 3.0 
•  Use the same Eclipse features to help you: 

–  Generate constructor 
–  Add unimplemented methods 

Interface exercise, p.4 

•  Write a BusTest class, with just a main method: 
–  iimport java.util.*; at line 1 to be able to use ArrayList 
–  Create one Hybrid and one CNGBus 

•  CNG bus range 200 miles, emission tier 2, capacity 50, cost $1 million 
•  Hybrid range 150 miles, emission tier 1, high voltage, capacity 45, cost 

$1.2 million (for each bus) 
–  Create an ArrayList 

•  ArrayList<what type?> arr= new ArrayList<what type?
>(); 

–  Add the Hybrid and the CNGBus to the ArrayList 
•  arr.add(h); 

–  Loop through the ArrayList and invoke getEmissionTier() 
and getID() on each element, and print out the value 
•  You must cast object types depending on the approach you use: either  
•  ((LiquidFuel) b).getEmissionTier();  // Or 

•  ((Bus) liq).getID(); 
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Interface exercise p.5 
•  Create new class ElectricBus that implements 

Electric 
–  Use extends, implements appropriately 
–  Data member voltage 
–  Write constructor 
–  Implement methods needed 

•  getAccel() returns 5.0 

•  Use Eclipse features to help you: 
–  Generate constructor 
–  Add unimplemented methods 

Interface exercise conclusion 
•  Last, we create an ElectricBus object in BusTest s 

main() 
–  Low voltage, capacity 55, cost $0.9 million 

•  We add the ElectricBus object to the BusTest 
ArrayList 
–  We modify the ArrayList in BusTest, if necessary, so it can 

hold the ElectricBus object as well as the Hybrid and 
CNGBus.  
•  We ll need to have an ArrayList<Bus> 

–  Java has a keyword instanceof 
 if (b instanceof Electric) 

  double v= ((Electric) b).getVoltage(); 

–  Print the voltage and/or emissionTier within the loop over 
ArrayList in BusTes, as appropriate for each Bus object 
•  Hybrid will have both, Electric just voltage, CNGBus just tier 
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Inheritance- key points 
•  Super classes or base classes 

–  Abstract or concrete 
•  Sub classes or derived classes 

–  Abstract or concrete 
–  Inherit all data members and methods from superclass 

•  Method types 
–  Abstract method: no method body 
–  Non-abstract method: use superclass version or override 

•  Use super.<methodName>() to call superclass version of method 
–  Final method: cannot be overridden 
–  Constructor: use super() to call superclass constructor 

•  Inheritance mechanisms 
–  Extends: inherits data members, methods with bodies 
–  Implements: multiple inheritance using interfaces 

•  Inherits only method signatures, constants 

•  Access: protected (or private, package or public) 
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