1.00 Lecture 13

Inheritance

Reading for next time: Big Java: sections 10.5-10.6

Inheritance

* Inheritance allows you to write new classes
based on existing (super or base) classes
— Inherit super class methods and data
— Add new methods and data

* This allows substantial reuse of Java code
— When extending software, we often write new code that
invokes old code (libraries, etc.)

— We sometimes need to have old code invoke new code
(even code that wasn’ t imagined when the old code was
written), without changing (or even having) the old code

* E.g., A drawing program must manage a new shape

— Inheritance allows us to do this also

Access for inheritance

« Class may contain members (methods or data) of
type:
— Private:
+ Access only by class’ s methods
— Protected

* Access by:
— Class’ s methods

— Methods of inheriting classes, called subclasses or derived
classes

— Classes in same package
— Package:
» Access by methods of classes in same package
— Public:
* Access to all classes everywhere

A Programming Project

* Department has system with Student class

— Has extensive data (name, ID, courses, year, ...) for all
students that you need to use/display

— Department wants to manage research projects better

* Undergrads and grads have very different roles
— Positions, credit/grading, pay, ...

— You want to reuse the Student class but need to add very

different data and methods by grad/undergrad

* Suppose Student was written 5 years ago by someone else
without any knowledge that it might be used to manage
research projects

Classes and Objects

Encapsulation Message passing Main method

Student S1

private:

public .. main(.){

Student S1= new Student
(“Jo” , “wang” , 1) ;

firstName

™—Sl.printbataQ);
dept P

// Prints all data

}

Inheritance

Zlass Stude

Already written:
irstName
lastName

irstName-
lastName

underWage gradSalary

underHours frintData
printData

’\ /' getPay
getPay

You next write:

Inheritance, p.2

gradSalary

printData‘
getPay

Exercise: Student class

» Write a public student class as a base or super
class:
— Two private variables: first name, last name
— Constructor with two arguments
— Void method printbata() to print the first + last name:

Exercise: Undergrad class

* Write an undergrad class as a derived or subclass:
Class declaration:

« public class Undergrad extends Student
Add private double variables underwage and underHours
Constructor: How many arguments does it have?

* Invoke superclass constructor in 15t line of body:
super(<arguments>) // Use actual arguments

* And then set the two new private variables as usual

Method getPay() returns double underwage *
underHours

Method printbata() prints name and pay (void)

» Use superclass printData() method to print name in 1st line:
super.printbata();

- Write a second line to System.out.println weekly pay

Exercise: Grad class

* Write a crad class as a derived or subclass:
— Class declaration: extends student
— Add private double variable gradsalary
— Constructor: How many arguments does it
have?

* Invoke superclass constructor in 1st line of body:
super(<arguments>) // Use actual args

* And then set the new private variable
— Method getpay() returns double gradsalary

— Method printbata() prints name and pay (void)

» Use superclass printbata() method to print name
on 1st line

* Write second line to print monthly pay

Exercise: Special Grad class

» Write SpecGrad class as derived or subclass:

— Class declaration: extends

— Add private double variable specstipend

— Constructor: How many arguments does it have?
* Invoke superclass constructor: super(<arguments>)
* And then set the new private variable

— Method getpay() returns double specStipend

— Method printbata() prints name and pay (void)

» Use superclass printbata() method to print name and
monthly salary (which is zero)

* Write second line to print stipend

— A special grad gets only a stipend, not a monthly
salary. We’ Il discuss it in solutions.

Exercise: main()

- Download class StudentTest

— It has only a main() method, which:
 Creates Undergrad ferd at $12/hr for 8 hrs
* Prints Ferd’ s data
 Creates Grad ann at $1500/month
* Prints Ann’ s data
 Creates SpecGrad mary at $2000/term
* Prints Mary’ s data
« Creates an array of 3 Students
+ Sets array elements to ferd, ann, mary
« Loops through the array and uses printbData() on
each Student object in the array to show their data.

— What happens in the loop? Did you expect it?

Main method

public class StudentTest {
public static void main(string[] args) {

Undergrad ferd= new Undergrad("Ferd", "smith", 12.00, 8.0);

ferd.printbpata();

Grad ann= new Grad("Ann", "Brown", 1500.00);
ann.printbata();

SpecGrad mary= new SpecGrad("Mary", "Barrett", 2000.00);
mary.printbata();
System.out.printlnQ;

// Polymorphism, and late binding
Student[] team= new Student[3];
team[0]= ferd;

team[1]= ann;

team[2]= mary;

}

Java has internal
table with the

team[i].printbata(Q; at run time

Inheritance: Type set at runtime

We can write a variation on StudentTest to

prompt the user to pick a student type

(undergrad, grad, special grad) with a

JOptionPane, and then enter the needed data

— The Undergrad, Grad or SpecGrad object would be
placed in the team array

When this program is compiled it has no way of

knowing what kinds of Students will be added to

the team array by a user

When the program is run and objects are added,
their types are dynamically tracked

— In the team array, each object’ s specific printData()
method will be invoked

most specific object
type and chooses the
for (int i=0; i < 3; i++) appropriate method

StudentTest with input

import javax.swing.*;
public class StudentTestwithInput {
public static void main(string[] args) {
Student[] team = new Student[3];
for (int i= 0; i < team.length; i++) {
String type = JOptionPane.showInputDialog("Enter type");
String fname = JOptionPane.showInputDialog("Enter fname");
String lname = JOptionPane.showInputDialog("Enter Tname™);
String payStr = JOptionPane.showInputDialog("Enter pay™);
double pay= Double.parsebouble(paystr);
if (type.equals("Grad"))
team[i]= new Grad(fname, Tname, pay);
else if (type.equals("SpecGrad"))
team[i]= new SpecGrad(fname, Tname, pay);
else
team[i]= new undergrad(fname, lname, pay, 8.0);

1

// Polymorphism, and late binding

for (int i =0; i < 3; i++) {
System.out.print(team[i].getClassQ+ ": "5
team[i].printData(Q); } } }

Exercise

* In class Grad:

— Change printData() to use getPay() instead of
explicitly printing gradSalary

— Save/compile and run StudentTest

— What happens?

— Why?

MIT OpenCourseWare
http://ocw.mit.edu

1.00/1.001 / 1.002 Introduction to Computers and Engineering Problem Solving
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

