
1

1.00 Lecture 13

Inheritance

Reading for next time: Big Java: sections 10.5-10.6

Inheritance

•  Inheritance allows you to write new classes
based on existing (super or base) classes
–  Inherit super class methods and data
–  Add new methods and data

•  This allows substantial reuse of Java code
–  When extending software, we often write new code that

invokes old code (libraries, etc.)
–  We sometimes need to have old code invoke new code

(even code that wasn t imagined when the old code was
written), without changing (or even having) the old code
•  E.g., A drawing program must manage a new shape

–  Inheritance allows us to do this also

2

Access for inheritance

•  Class may contain members (methods or data) of
type:
–  Private:

•  Access only by class s methods
–  Protected

•  Access by:
–  Class s methods
–  Methods of inheriting classes, called subclasses or derived

classes
–  Classes in same package

–  Package:
•  Access by methods of classes in same package

–  Public:
•  Access to all classes everywhere

A Programming Project

•  Department has system with Student class
–  Has extensive data (name, ID, courses, year, �) for all

students that you need to use/display
–  Department wants to manage research projects better

•  Undergrads and grads have very different roles
–  Positions, credit/grading, pay, �

–  You want to reuse the Student class but need to add very
different data and methods by grad/undergrad
•  Suppose Student was written 5 years ago by someone else

without any knowledge that it might be used to manage
research projects

3

public … main(…){

Student S1= new Student
(Jo , Wang , 1);

...

S1.printData();

// Prints all data

...

}

Classes and Objects
Encapsulation Message passing Main method

Student S1

lastName
firstName

dept
printData

private: public:

Class Student

firstName
lastName

dept

printData

Class Undergrad

underWage
underHours

firstName
lastName

dept

Class Grad

gradSalary

firstName
lastName

dept

printData
getPay

is-a

printData
getPay

Already written:

is-a

You next write:

Inheritance

4

Class Grad

gradSalary

firstName
lastName

dept

printData
getPay Class SpecGrad

firstName
lastName

dept

printData
getPay

gradSalary

specStipend

is-a

Inheritance, p.2

Exercise: Student class

•  Write a public SStudent class as a base or super
class:
–  Two private variables: first name, last name
–  Constructor with two arguments
–  Void method printData() to print the first + last name:

5

Exercise: Undergrad class

•  Write an UUndergrad class as a derived or subclass:
–  Class declaration:

•  public class Undergrad extends Student
–  Add private double variables underWage and underHours
–  Constructor: How many arguments does it have?

•  Invoke superclass constructor in 1st line of body:
super(<arguments>) // Use actual arguments

•  And then set the two new private variables as usual
–  Method getPay() returns double underWage *

underHours

–  Method printData() prints name and pay (void)
•  Use superclass printData() method to print name in 1st line:

 super.printData();
•  Write a second line to System.out.println weekly pay

Exercise: Grad class

•  Write a GGrad class as a derived or subclass:
–  Class declaration: extends Student
–  Add private double variable gradSalary
–  Constructor: How many arguments does it

have?
•  Invoke superclass constructor in 1st line of body:
super(<arguments>) // Use actual args

•  And then set the new private variable
–  Method getPay() returns double gradSalary
–  Method printData() prints name and pay (void)

•  Use superclass printData() method to print name
on 1st line

•  Write second line to print monthly pay

6

Exercise: Special Grad class

•  Write SSpecGrad class as derived or subclass:
–  Class declaration: extends _______
–  Add private double variable specStipend
–  Constructor: How many arguments does it have?

•  Invoke superclass constructor: super(<arguments>)
•  And then set the new private variable

–  Method getPay() returns double specStipend
–  Method printData() prints name and pay (void)

•  Use superclass printData() method to print name and
monthly salary (which is zero)

•  Write second line to print stipend
–  A special grad gets only a stipend, not a monthly

salary. We ll discuss it in solutions.

Exercise: main()

•  Download class SStudentTest
–  It has only a main() method, which:

•  Creates Undergrad ferd at $12/hr for 8 hrs
•  Prints Ferd s data
•  Creates Grad ann at $1500/month
•  Prints Ann s data
•  Creates SpecGrad mary at $2000/term
•  Prints Mary s data
•  Creates an array of 3 Students
•  Sets array elements to ferd, ann, mary
•  Loops through the array and uses printData() on

each Student object in the array to show their data.
–  What happens in the loop? Did you expect it?

7

Main method
ppublic class StudentTest {

 public static void main(String[] args) {

 Undergrad ferd= new Undergrad("Ferd", "Smith", 12.00, 8.0);

 ferd.printData();

 Grad ann= new Grad("Ann", "Brown", 1500.00);

 ann.printData();

 SpecGrad mary= new SpecGrad("Mary", "Barrett", 2000.00);

 mary.printData();

 System.out.println();

 // Polymorphism, and late binding Java has internal
 Student[] team= new Student[3];

 team[0]= ferd; table with the
 team[1]= ann; most specific object
 team[2]= mary; type and chooses the
 for (int i=0; i < 3; i++) appropriate method
 team[i].printData();

 }
at run time

}

Inheritance: Type set at runtime

•  We can write a variation on StudentTest to
prompt the user to pick a student type
(undergrad, grad, special grad) with a
JOptionPane, and then enter the needed data
–  The Undergrad, Grad or SpecGrad object would be

placed in the team array
•  When this program is compiled it has no way of

knowing what kinds of Students will be added to
the team array by a user

•  When the program is run and objects are added,
their types are dynamically tracked
–  In the team array, each object s specific printData()

method will be invoked

8

iimport ja

StudentTest with input
vax.swing.*;

c class StudentTestWithInput {

lic static void main(String[] args) {

publi

 pub

 Student[] team = new Student[3];

 for (int i= 0; i < team.length; i++) {

 String type = JOptionPane.showInputDialog("Enter type");

 String fname = JOptionPane.showInputDialog("Enter fname");

 String lname = JOptionPane.showInputDialog("Enter lname");

 String payStr = JOptionPane.showInputDialog("Enter pay");

 double pay= Double.parseDouble(payStr);

 if (type.equals("Grad"))

 team[i]= new Grad(fname, lname, pay);

 else if (type.equals("SpecGrad"))

 team[i]= new SpecGrad(fname, lname, pay);

 else

 team[i]= new Undergrad(fname, lname, pay, 8.0);

 }

 // Polymorphism, and late binding

 for (int i = 0; i < 3; i++) {

 System.out.print(team[i].getClass()+ ": ");

 team[i].printData(); } } }

Exercise

•  In class Grad:
–  Change printData() to use getPay() instead of

explicitly printing gradSalary
–  Save/compile and run StudentTest
–  What happens?

–  Why?

MIT OpenCourseWare
http://ocw.mit.edu

1.00 / 1.001 / 1.002 Introduction to Computers and Engineering Problem Solving
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

