
1 

1.00 Lecture 10 

Static Methods and Data 

Reading for next time: Big Java: sections 7.1-7.4, 7.6, 7.8 

Strings 
ppublic class StringExample { 

  public static void main(String[] args) { 

    String s= new String("Test");  // Strings are objects 

    String first= "George ";   // Shortcut constructor 

    String middle= "H.W. "; 

    String last= "Bush"; 

    String full= first + middle + last; 

    System.out.println("Full: " + full); 

 

    // Testing for equality in strings (objects in general) 

    String full2= "George H.W. Bush"; 

    if (full.equals(full2))      // Right way 

        System.out.println("Strings equal"); 

    if (full == full2)           // Wrong way 

        System.out.println("A miracle!");    

    if (first == "George ")  // Wrong way,but sometimes works 

        System.out.println("Not a miracle!");  // Unreliable 

    // Modifying strings must be done indirectly-strings are constants 

    middle= middle.substring(2, 4) + " ";  // Get 2nd, 3rd chars 

    full= first + middle + last; 

    System.out.println("Modified full: " + full);    }  } 

    // See String documentation on javadoc 



2 

Static Class Methods, Data 

•  Static data fields: 
–  Only one instance of data item for entire class 

•   Not one per object 
–  Static  is a historic keyword from C and C++ 
–  Class data fields  is a better term 

•  These are the alternative to instance data fields   (which are a 
field in each object) 

•  Static methods: 
–  Do not operate on objects and do not use any specific 

object 
–  Have access only to static data fields of class 

•  Cannot access instance fields in objects 
•  You can pass arguments to static methods, as with all methods 

–  Class methods  is a better term 
•  These are the alternative to instance methods  (that operate 

on an object) 

When to Use Static Data 
•  Variables of which there is only one for a class 

–  For example, the next ID number available for all MIT students 
(assuming they are issued sequentially).  In a SStudent class: 
public class Student { 

  private String name;    // 1 value per instance 

  private int ID;    // 1 value per instance 

  private static int nextID=1; // 1 value per class 

  public static int getID() { return nextID++;} 

� 
•  Constants used by a class (final keyword) 

–  Have one per class; don t need one in each object 
   public static final int MAX_TERMS_AS_STUDENT= 16; 

   public static final double ABSOLUTE_ZERO= 273.0; 

–  If ABSOLUTE_ZERO is in class Temperature, it is invoked by 
   double tKelvin= Temperature.ABSOLUTE_ZERO + tCelsius; 

–  Constants are all caps by tradition (C, C++) 
–  Static variables in C, C++ are different than in Java 



3 

When to Use Static Methods 

•  For methods that use only their arguments and 
thus don t need an object for member data 

 public static double pow(double b, double p)   

 // Math library, takes b to the p power 

•  For methods that only need static data fields 
  public static int getID( ) { return nextID++;} 

  // nextID is a static variable (see previous page) 

•  Main method in the class that starts the program 
–  No objects exist yet for it to operate on 

•  All methods in C are like static Java methods, 
since C has no classes/objects 
–  C++ has both Java-like and C-like methods 

Exercise 
•  We ll experiment with whether rail locomotives 

have enough power to haul a train at a given 
velocity 

Force  Resistance: static friction, rolling friction, air 

Decreases Increases with velocity 
with velocity 

Locomotive 

Locomotive force limited All cars alike (same mass) 
by horsepower, adhesion 



4 

Exercise 
•  Declare a class Train (Eclipse: File->New->Class) 

–  Create one public constant: gravity g= 9.8 
–  You ll finish this class later 

•  Declare a class Engine (Eclipse: File->New->Class) 
–  Variables: (there can be many engines w/diff mass, power) 

•  Mass 
•  Power 
•  Coefficient of friction mu (0.3), a public constant for all engines 

–  Constructor, as usual. How many arguments does it have? 
–  getMass() method 
–  getForce() method with one argument, velocity 

•  f1= power/velocity    (limit of engine horsepower) 
•  f2= mass * g * mu   (limit of adhesion to rail) 
•  Return the minimum of f1, f2  (use Math.min() method) 

•  Save / compile 

Exercise, p.2 

•  Write a static version of getForce() in class Engine 
–  Supply all needed variables as arguments 
–  Used by other classes that don t want to create an 

Engine object 
–  Method overloading:  

•  We can have multiple methods with the same name as long 
as they take a different number and or type of arguments. 

•  We cannot have two methods that differ only in return type 
•  Overloading is general; it s not related to static vs instance 

•  To write this method: 
–  First, copy and paste the instance version of getForce() 

you just wrote 
–  Then modify it into the static version 
–  You will need both versions of getForce() in this class 



5 

Exercise, p.3 

•  Write class Car (Eclipse: File->New->Class) 
–  Two private variables:  

•  A single average mass for any car 
•  Car type (coach, snack, first-class) 

–  Constructor. How many arguments does it have? 
–  Set and get methods for the single car mass 
–  If you have time: 

•  Write set and get methods for the car type 
•  Are these instance or static methods? 

Exercise, p. 4 
•  Finish class Train 
•  Data members: 

–  Gravity g   (already defined) 
–  Constant c1= 0.00015  (rolling resistance) 
–  Constant c2= 110.0  (air resistance) 
–  One engine (object) 
–  Number of cars (int) 
–  (Which data members are static?) 

•  Constructor 
–  What variables does it set? 

•  Method getNetForce(), with one argument: velocity 
–  Compute weight= g*(engine mass + no of cars * car mass) 
–  Compute net force= engine force - c1*weight*v - c2*v*v 
–  Return net force 



6 

Exercise, p.5 
Download TrainTest and add one line to it: 
blic class TrainTest { 
 public static void main(String[] args) { 
  double vel= 30.0;  // 30 m/s, 70mph 
  // Static method. No object needed. 
  double f34= Engine.getForce(vel, 90000, 5500000); 

  // Engine: 90 tonnes, 5500 kw 
  Engine r34= new Engine(90000, 5500000); 

  // Instance method 
  double force34= r34.getForce(vel); 
       
  // Don't need to create Cars. All we need is their mass 
  // But we must set their mass: 
  // Set it to 50000 kg here 
  // Train 
  Train amtrak41= new Train(r34, 10); 
  // Instance method 
  double force41= amtrak41.getNetForce(vel);   
  // Output (run TrainTest)   
 } 

• 
ppu

 

 

} 



MIT OpenCourseWare
http://ocw.mit.edu

1.00 / 1.001 / 1.002 Introduction to Computers and Engineering Problem Solving
Spring 2012
 
 
 
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

