1.00 Lecture 10

Static Methods and Data

Reading for next time: Big Java: sections 7.1-7.4,7.6, 7.8

Strings

public class StringExample {

public static void main(String[] args) {
String s= new String("Test"); // Strings are objects
String first= "George "; // Shortcut constructor
String middle= "H.w. ";
String last= "Bush";
string full= first + middle + last;
system.out.printin("Full: " + full);

// Testing for equality in strings (objects in general)

Sstring full2= "George H.W. Bush";

if (full.equals(full2)) // Right way
System.out.printin("strings equal”);

if (full == full2) // Wrong way
System.out.printin("A miracle!");

if (first == "George ") // Wrong way,but sometimes works
System.out.printin("Not a miracle!"); // Unreliable

// Modifying strings must be done indirectly-strings are constants

middle= middle.substring(2, 4) + " "; // Get 2nd, 3rd chars
full= first + middle + last;
System.out.printin("Modified full: " + full); } 3

// See string documentation on javadoc

Static Class Methods, Data

+ Static data fields:
— Only one instance of data item for entire class
* Not one per object
— “Static” is a historic keyword from C and C++
— “Class data fields” is a better term
» These are the alternative to “instance data fields” (which are a
field in each object)
+ Static methods:
— Do not operate on objects and do not use any specific
object
— Have access only to static data fields of class
» Cannot access instance fields in objects
* You can pass arguments to static methods, as with all methods
— “Class methods” is a better term

» These are the alternative to “instance methods” (that operate
on an object)

When to Use Static Data

« Variables of which there is only one for a class

— For example, the next ID number available for all MIT students

(assuming they are issued sequentially). In a Student class:
public class Student {

private String name; // 1 value per instance
private int ID; // 1 value per instance
private static int nextID=1l; // 1 value per class
public static int getiD() { return nextID++;}

« Constants used by a class (final keyword)

— Have one per class; don’ t need one in each object
public static final int MAX_TERMS_AS_STUDENT= 16;
public static final double ABSOLUTE_ZERO= 273.0;

— If ABSOLUTE_ZERO is in class Temperature, it is invoked by
double tKelvin= Temperature.ABSOLUTE_ZERO + tCelsius;

— Constants are all caps by tradition (C, C++)

— Static variables in C, C++ are different than in Java

When to Use Static Methods

* For methods that use only their arguments and

thus don’ t need an object for member data
public static double pow(double b, double p)
// Math 1ibrary, takes b to the p power

» For methods that only need static data fields
public static int getiD() { return nextID++;}
// nextID is a static variable (see previous page)
* Main method in the class that starts the program
— No objects exist yet for it to operate on
« All methods in C are like static Java methods,
since C has no classes/objects
— C++ has both Java-like and C-like methods

Exercise

« We’ Il experiment with whether rail locomotives
have enough power to haul a train at a given

velocity
Force Resistance: static friction, rolling friction, air
Decreases Increases with velocity

with velocity

Locomotive

OO OO 00 OO OO0 OO0 OO OO OO OO0

Locomotive force limited All cars alike (same mass)
by horsepower, adhesion

Exercise

» Declare a class Train (Eclipse: File->New->Class)
— Create one public constant: gravity g= 9.8
— You' Il finish this class later
* Declare a class Engine (Eclipse: File->New->Class)
— Variables: (there can be many engines w/diff mass, power)
* Mass
* Power
» Coefficient of friction mu (0.3), a public constant for all engines
— Constructor, as usual. How many arguments does it have?
— getMass() method
— getForce() method with one argument, velocity
« f1= powerl/velocity (limit of engine horsepower)
* f2=mass *g* mu (limit of adhesion to rail)
* Return the minimum of f1,f2 (use Math.min() method)

« Save / compile

Exercise, p.2

+ Write a static version of getForce() in class Engine
— Supply all needed variables as arguments
— Used by other classes that don’ t want to create an
Engine object
— Method overloading:

* We can have multiple methods with the same name as long
as they take a different number and or type of arguments.

* We cannot have two methods that differ only in return type
» Overloading is general; it’ s not related to static vs instance
* To write this method:

— First, copy and paste the instance version of getForce()
you just wrote

— Then modify it into the static version
— You will need both versions of getForce() in this class

Exercise, p.3

* Write class Car (Eclipse: File->New->Class)
Two private variables:

* A single average mass for any car

» Car type (coach, snack, first-class)
Constructor. How many arguments does it have?
Set and get methods for the single car mass
If you have time:

» Write set and get methods for the car type
» Are these instance or static methods?

Exercise, p. 4

Finish class Train
 Data members:

— Gravity g (already defined)
— Constant ¢c1=0.00015 (rolling resistance)
— Constant c2=110.0 (air resistance)

One engine (object)
Number of cars (int)
(Which data members are static?)
» Constructor
— What variables does it set?

Method getNetForce(), with one argument: velocity
— Compute weight= g*(engine mass + no of cars * car mass)
— Compute net force= engine force - c1*weight*v - c2*v*v
— Return net force

Exercise, p.5

» Download TrainTest and add one line to it:

public class TrainTest {
public static void main(string[] args) {
double vel= 30.0; // 30 m/s, 70mph
// Static method. No object needed.
double f34= Engine.getForce(vel, 90000, 5500000);

// Engine: 90 tonnes, 5500 kw
Engine r34= new Engine(90000, 5500000);

// Instance method
double force34= r34.getForce(vel);

// Don't need to create Cars. All we need is their mass
// But we must set their mass:

// Set it to 50000 kg here

// Train

Train amtrak4l= new Train(r34, 10);

// Instance method

double force4l= amtrak4l.getNetForce(vel);

// output (run TrainTest)

MIT OpenCourseWare
http://ocw.mit.edu

1.00/1.001 / 1.002 Introduction to Computers and Engineering Problem Solving
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

