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1. Anharmonic Oscillator, Vibration-Rotation Interaction

The Hamiltonian is

P2 k J2
H= £+ x° 3 — 1.1
o TN T (1.1)
N———— N——
harmonic oscillator non—rigid rotor

First we must re-express % in terms of a quantity whose matrix elements we know such as the displacement .

r=R— R,

R:Re+x:Re<1+§e) (1.2)
1 1 T z\?
™ 72 (1 -2 <Re> +3 (Re> > power series expansion (1.3)

where we truncate expansion after (z/R.)%.

The Hamiltonian operator becomes

P2 k J?2 2x  3x?
H= R F 2 3 122 1.4
2H+2X + ax +2MR3{ R6+R§] (1.4)

Let us choose a basis {|v) |J)} where |v) is the harmonic oscillator basis and |J) is the rigid rotor basis. The rotational

matrix elements we need are

(J|I*| "y = J(J +1)é,p (1.5)
(J|constant|.J’) = §;, constant (1.6)
(J|vibr.coord.|J") = 67 vibr.coord. (1.7)
2
and B, (in energy units) = 2 J. (1.8)
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Thus the rotational expectation values of the Eq.(1) Hamiltonian become

P2k, 3 2x  6uBe o
<J|H|J>:<Q’UI+2X)+G:X +B6J(J+1) 1—E+?X (19)
where Rig was replaced by 2’,?23 =
Now we need some x matrix elements. Let
vk k
S L (1.10)
h v
1/2
v+1
] = 1.11
Ly, v+1 ( 2y ) ( )
1
Ty ugr = 5[(@ +1)(v +2)]'/2 (1.12)
v+
2= (1.13)
1/2
3 (v+1)(v+2)(v+3)
xv,v-&-i} = 8~3 (114)
Y
3/2
3 v+1
Tyl = 3[ 5 } (1.15)
Remember that the harmonic oscillator part of our Hamiltonian is diagonal in the harmonic oscillator basis we have
chosen.
JH[W'J') = h L) 5,00 8 055+ Bed (J+1) |66 2 gy + BBe 2 s 1.16
<U | |U >* v ’U+§ JJ"Ovy! + QT30 + De ( + ) v’ JJliRiexUU’ JJ’+?IM/ JJ! ( . )

Note that the Hamiltonian matrix is completely diagonal in J.

The remaining problem is how to arrange the H matrix now that we have two indices J and v. The Hamiltonian
matrix is a super-matrix consisting of a v, v/ matrix of J, J’ matrices. However, since there are no matrix elements
off-diagonal in J, it is convenient to alter our perspective and think of a set of single v, v’ matrices, one for each

value of J. Thus the Hamiltonian matrix is given by

(w|Hv) = hv (v + ;) BT +1)+ BS% <u + ;) J(J+1) (1.17)
(v[HJv+ 1) = 3a {”;1] v 2}% (”;1)1/2 J(J+1) (1.18)
(w[H|v — 1) = 3a {2”7} v 2}% (27;) Y e (18a)
(v|H|v 4 2) = 3552“J(J+1)[(v+1)(v+2)}1/2 (1.19)
(w|H]v — 2) = 3552%@ +1)[(w = 1))/ (19a)
(W|Hv +3) = a F’W 1)(U8J;32)(”+3)r/2 (1.20)

v(v—1)(v—2)1"?
Ol —3) = o[ =2 (200)
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We are now in a position to use perturbation theory to determine the contributions of the various terms in the
Hamiltonian to the eigenvalues. Note that when faced with an infinite Hamiltonian matrix it will always be necessary
to use the Van Vleck transformation in order to truncate the matrix. We act as if part of the matrix isn’t there, yet
we know that the Van Vleck transformed energies will be a very good approximation to the eigenvalues of the infinite
matrix. In this example, the matrix will be treated entirely by first and second order perturbation theory and no

diagonalization will be carried out. For our choice of basis, the zero-order Hamiltonian is diagonal by definition.

HO = [l (0 + 1) + BoJ(J +1)] 875800 = EO) (1.21)

The perturbation terms are what is left over

2B 61B2
HY = (ax3 -2 J(J+1)x+ ’;2 < J(J + 1)x2> 81 (1.22)
The first order corrections to the energy are given by
<v JIHD |y J> L (A (1.23)
Y Y e ’_yh2 2
but - = =.
Thus
2
EM =62 (v 4+ 1) J(J +1) (1.24)

This is a harmonic vibrational correction to the rotational constant. Compare with the leading term in Dunham’s
expression for Y11 ~ —a.

Note that this term causes B(v) to increase as v increases. This is puzzling because everyone knows that B(v)
decreases for real diatomics.

The second order corrections are

M) |y ! (1)
e 5 (W) 7 T )
v’ #v K ,

(1.25)

Note that for each of the three allowed off-diagonal matrix elements of equations 18-20, there will be two nonzero
terms in the summation over v’.

From the (v|H|v £ 3) matrix elements we get

Efg :?)C;TV l:v(v_l)(U—Q)_é:/;_ V(v +2)(v+3) (1.26)
E® = - 8;;}“/ (30 + 30+ 2)] (1.27)

The 3hv in the denominator of (26) comes from Ef)o), . El()(i)gﬂ,. From the (v|H|v £ 2) matrix elements we get

9B 2 J2(J + 1)

EY) = gy (@ Dy (0 (o +2)]
9B 12 J2(J +1)2 18BLJ2(J +1)% (v + 1)
B2 = T YRR | R 2 1.28
+ ~v2ht . hy [2v+1] (hv)3 ( )
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This is a harmonic vibrational correction term to a centrifugal distortion constant. This will not agree with Dunham’s

result because we only kept terms in the expansion of B in powers of 2 through the second power. This second

order correction to the energy is actually a 2 x 2 = 4" power correction in % Terms in the B expansion through

4
(Rie) also contribute.
From the (v|H|v £ 1) matrix elements we obtain

@ _ 9a%(v? — (v +1)3) n 4B2J%(J +1)%[v — (v + 1)) _ 12aB.J(J + D[v? — (v+1)?]

(2v)3hv 2yR2hv R.(27)2hv
9 a? 2B2J%(J +1)? a B.J(J+1) (v + l)
EQ) =~ 30 4+ 30+ 1) — ¢ 6 2 1.29
+1 8 (hu’y?’) (Bv”+3v+1) ~yRZhv + hv~? R, (129)

The first term of (29) should be added to a similar term which occurs in equation (27). The sum will be the first

term in equation (30) below. The second term may be simplified using

u 1 1 B.2u
Mo ad = =
2 he MY RET T2
giving —W which should be compared with Dunham’s Yjso.

This term is the harmonic oscillator contribution to the centrifugal distortion constant.

In summary

B o2 2 o 6B.J(J+1)(v+3 4B3J?(J+1)2 18B27%(J+1)?(v+3
E(2) - (hu’ys) (%) [(U + %) + 610:| + (hl/"y2> R, ( 2) - (hv)? B (hv)3 ( 2) (130)

The first term is an anharmonic contribution to wex, (v + %)2 and to the zero point energy. In fact, this is why wez.
is called the anharmonicity constant.

The second term is an anharmonic correction to the rotational energy. Note that this correction is of the same
sign as the harmonic correction we obtained in first-order in equation (24). B = B, — . (v + %). However the sign
of a is negative for realistic potential curves.

If |a| is large enough, the negative anharmonic contribution to a. will be larger than the positive harmonic
contribution and B(v) will decrease as v increases.

The third term is the harmonic contribution to centrifugal distortion. E; = BJ(J + 1) — DJ*(J + 1)%.

The fourth term is a harmonic vibrational correction to the centrifugal distortion constant D = D, — (3, (v + %)

2. Energy Levels of a Vibrating Rotor:
Dunham’s Expression for E(v,J) Derived from E(r)

Following is an excerpt from Microwave Spectroscopy by C. Townes and A. Schawlow, pages 9-11, which describes

the results of Dunham’s inversion of the potential energy, V(r), expressed as a power series in the dimensionless
displacement coordinate £, into a power series in the rotational and vibrational quantum numbers, J(J + 1) and
(v+1/2). The Rydberg-Klein-Rees procedure is exactly the reverse of this, converting F (v, J) into V(r).

Dunham’s Solution for Energy Levels

Dunham! has calculated the energy levels of a vibrating rotor, by a Wentzel-Kramers-Brillouin method,
for any potential which can be expanded as a series of powers of (r — r.) in the neighborhood of the

potential minimum. This treatment shows that the energy levels can be written in the form
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¢
1 , ,
By = E Yy, <v + 2) JN(J +1) (2.1)
4,3

where ¢ and j are summation indices, v and J are, respectively, vibrational and rotational quantum
numbers, and Yy; are coefficients which depend on molecular constants. The effective potential function

of the vibrating rotor may be written in the form
U=aof(i+ar1€&+as®+...) + BoJ(J +1)(1 =26 +36% -4 +..) (2.2)

where £ = (r —r.)/re, Be = h/87?ur?. The term involving B.J(J + 1) allows for the influence of the

rotation on the effective potential.
Examination of the Harmonic Oscillator part of the potential energy, U, will give a value for ay.

U =1/2k(r —r.)? = 202 puw? (r — re)? = 2m2pw?€?r?

hw?
if B.= ———  then U = —£¢2
' 82 pur? o 4366
2
w
cSoag = h—=
@0 ="yB,

Dunham! shows that the first 15 Y3;’s are

Yoo = B./8(3as — a3 /4)

Yio = we[l 4+ (B2/4w?)(25a4 — 95a1a3/2 — 67a3 /4
+459a%ay /8 — 1155a7 /64))

Yao = (Be/2)[3(az — 5a3/4) + (B2 /2w?)(245a¢ — 1365a;as5/2
— 885aga4/2 — 108543 /4 + 8535a%a4/8 + 1707a3 /8
+ 7335a1a2a3/4 — 23,865a5a3/16 — 62,013a1a3/32
+ 239, 985a7as/128 — 209, 055a$ /512)]

Y30 = (B%/2w,)(10ay — 35a1a3 — 17a3/2 + 225a1a; /4
— 705a7/32)

Yo = (5B2 Jw?)(Tag/2 — 63a1a5/4 — 33aza4/4 — 63a3/8
+ 543a2a4 /16 + T5a3 /16 + 483a1aza3/8 — 1953a3 a3 /32
— 4989a%a3 /64 + 23,265a7a2/256 — 23,151 /1024)
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Yo1 = Be{1 4 (B?/2w?)[15 + 14a; — 9ay + 15a3 — 23a1az
+21(a? + a3)/2]}
Yi1 = (B?Jwe){6(1 + a1) + (B%/w?)[175 + 285a1 — 335a2/2
+ 190a3 — 225a4/2 + 175a5 + 229543 /8 — 459a; az
+ 1425a1a3/4 — 795a1a4/2 + 1005a3 /8 — T15aza3/2
+ 115543 /4 — 9639a%a2 /16 + 5145a7a3/8
+ 4677a1a3 /8 — 14,259a% az /16
+31,185(af + af)/128]}
Ya1 = (6B2 /w?)[5 + 10a; — 3as + 5as — 13a;a2
+15(a? +a3) /2]
Y31 = (20B2/w3)[7 + 21a; — 17as/2 + 14az — 9a4/2 + Tas
+ 225a% /8 — 45a1a5 + 105a;1a3/4 — 5lajay/2 + 51a3 /8
— 45aza3/2 + 141a3 /4 — 945a3 a5 /16 + 435a3a3/8
+ 411a1a3/8 — 1509a3az /16 + 3807(a] + af)/128)
Yoo = —(4B2 Jw?){1 + (B?/2w?)[163 + 199a; — 119as + 90as3
— 45a4 — 207ayas + 205a1a3/2 — 333a3as/2 + 693a3 /4
+ 4603 + 126(a3 + a1 /2)]}
Vis = — (12B2/ w?) <129 +9a; + 9a3 /2 — 4a2>
Yoo = —(24B2 Jw)[65 + 125a; — 61az + 30a3 — 15a4
+ 49543 /4 — 117ayay + 26a3 + 95a1a3/2 — 207a%ay /2
+90(af + a1/2)]
Yoz = 16B%(3 + a1)/w?
Yis = (12B°/w5)(233 + 279a; + 18942 + 63a’ — 88ajas — 120ay + 80as3/3)
Yo4 = (64B] /w8)(13 + 9a1 — az + 9ai/4)

Page 6

(2.6)

It should be noted that B, is generally much smaller than w,. For most molecules the ratio B2 / w? is of the

order of 107°, although for light molecules such as Hs it approaches more nearly to 10~°. In such cases more terms

are required in the expressions for the various coefficients.

If B./w, is small, the Y’s can be related to the ordinary band spectrum constants as follows:

Yio & we Yoo & —wewe Y30 & weye
Ybl ~ Be Yll N~ }/21 ~ Ve
Yoo = —D, Yio = —f Yio = weze
Yos ~ H.

2.7)
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where these symbols refer to the coefficients in the Bohr theory expansion for the molecular energy levels:

1 1\* 1\* 1*
Foj=we <v+2)—wexe<v+2) +weye<v+2) +weze(v+2>

+BJ(J 4 1) = D J*(J +1)2 + H J3(J +1)3 + ... (2.8)

where B, = B, — «, (v + %) + Ve (v + %)2 ... (cf2, p. 92, pp. 107-108).

Sandeman® has extended Dunham’s treatment to include other terms of the same order of magnitude which
involve higher powers of the vibrational quantum number.

For the special case of the Morse potential function, Dunham shows that all the Yyy’s except Yi¢ and Y5¢ vanish
and all but the first terms in the expressions for Y19 and Y3¢ are zero. Because of the simplicity of the expressions
obtained with the Morse function, and because it does give a quite good fit to the actual potential in the region of
r = r., the Morse function has been widely used.

Several important relationships between constants have been derived for Morse potential functions. These are

often useful for estimating otherwise unknown parameters.
3
The Kratzer relation D, = 25

w? -
The Pekeris relation

Qe = E |:(W3$5B2)1/2 — Bz}

€
The constant Yo is exactly zero for Harmonic and Morse oscillators, but an approximate value for general

oscillators is

Yoo =

Be — wexe n QW QeWe 2
4 128, 12B.) B.’
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