MASSACHUSETTS INSTITUTE OF TECHNOLOGY

5.73 Quantum Mechanics I
Fall, 2002

Professor Robert W. Field

Problem Set #9

DUE: At the start of Lecture on Friday, November 22.

Reading: Angular Momentum Handouts
C-TDL, pages 999-1024, 1027-1034, 1035-1042

Spherical components of a vector operator

Vi =272V, +ivy |
VO = Vz

Scalar product of two vector operators

VIW=3(-D*V_,W,.
u

Scalar product of two tensor operators

TO[AL, Ay ]= T (-1 TEL“’)[Al]Ti‘ﬁ)[AZ].
u

Problems:
1. CTDL, page 1086, #2.
2. CTDL, page 1089, #7.
3. CTDL, page 1089, #8.
4. A. d orbitals are often labeled xy, xz, yz, 72, X2—y2. These labels are Cartesian tensor
components. Find the linear combinations of binary products of x, y, and z that may be
labeled as Tizz) and ’J;)(Z) .
B There i ful £ la f i £ d'dT(Q herical
. ere is a powerful formula for constructing an operator of any desired T, * spherica

tensor character from products of components of other operators
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Q
T (AL, Ay = AL [ To2) [As]
1

where A is a Wigner or Clebsch-Gordan coefficient, which is related to 3-j coefficients

as follows:
12 j3 _(_1)17j2—m3 (5 “1/2 , j1jajs
(m] my; mgj= —(ml +m2 )j_( 1) (2]3 +1) AM]MZ_M3 ’

Use the T(Q) [A1,A3] formula to construct the spherical tensor T 2 and T(3) components
of f orbitals by combining products of linear combinations of Cartesian labeled d and p
orbitals. In other words, combine T [x,y,z] with T(J)[x,y,z] to obtain Ty (3) as a linear
combination of products of 3 Cartesian components.

5. Angular Momenta

Consider a two-electron atom in the “electronic configuration” 3d4p. The electronic states that
belong to this configuration are °F, 'F, °D, 'D, °P, and 'P. There are (2/, + 1) (2(,+1) (25, + 1)
(2s, + 1) = 60 spin-orbital occupancies associated with this configuration. I am going to ask you
to solve several angular momentum coupling problems, using 3-j coefficients and the Wigner-
Eckart Theorem for states belonging to this configuration. However, I do not expect you to

consider the anti-symmetrization requirement that is the subject of lectures #30 - 36.

Spin-orbitals in the uncoupled basis set are denoted by n/msmy(i) where  is the principal
quantum number and i specifies the name of the assumed-distinguishable electron. Sinces=1/2
for all electrons, we can use an abbreviated notation for spin-orbitals: (Ao/B where o
corresponds to m, = +1/2 and B to m, =-1/2. The two-electron basis states are denoted

|61 21 (0/B), L2 (/B), ). €8 |3 -1 2-1B) where the first three symbols are associated with e
#1 and the second three with e™ #2.

The many-electron quantum numbers L, M|, S, M; are related to the one-electron spin-orbital

quantum numbers by

and L and S must be constructed from the proper linear combination of spin-orbital basis states.
For example,

F,M, =4,M; =1) =[33a 110t)

This is a problem of coupled«>uncoupled transformation,
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LML) = D [0 R A £ohy [LEy £,M )
»

where M; =, + A, and /, < /;. The same situation obtains for the spin part

|Ssy5,M ) = z |51615,6, )(5,015,0, |Ss15,Ms).

Oy

A. Use 3-j coefficients to derive the linear combination of six spin-orbital occupancies that
corresponds to the | °P, M; =0) state. The six basis states are [3—100 11B), [3-1B 110w,

13000 108), 308 1001),

three uncoupled—coupled transformations:

O 0 > L 0 ,M

$,0,5,6, = S 8,5,Mg
and

LM, SM; — JLSM,.

I advise against using ladders plus orthogonality to solve this problem because M;= 0 is
the worst possible situation for this method.

B. The atom in question has a nonzero nuclear spin, I = 5/2. This means that you will
eventually have to perform one more uncoupled to coupled transformation:

F=I+]
|TMIM; ) — [FIIM: ).

The nuclear spin gives rise to “Fermi-contact” and magnetic dipole hyperfine structure.
The hyperfine Hamiltonian is

H" =)' (ajs;T1+b¢, Y1)

The AF = A] = AL = AS = AI = 0 special form for the Wigner-Eckart theorem for vector
operators may be used to replace the above “microscopic” form of H" by a more
convenient, but restricted, form

H" = ¢ JeI

because the microscopic H" contains 2 a;s; and z b;¢;, both of which are vectors

iti»
i

with respect to J.
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=cys) 2l

where ¢ 5 is a reduced matrix element evaluated in the |]LSM I> basis set

]LS>

Z (ajs; +byt;)

1

Z (ajs; + bit;)

1

CILS = <]LS

where

C]LS = <]LSM]

]LSM§> = ¢y 5(JLSMy 1T 1JLSMY).

Cjis is a constant that depends on each of the magnitude quantum numbers J, L, and S (but
not F and I). I will review this derivation and show you how to evaluate the J, L, S
dependence of ¢; 5 in a handout.

Similarly, the spin-orbit Hamiltonian
H =2 C(ri)gizsi

may be replaced by the AL = 0, AS = 0 restricted form,
H®={LeS.

The purpose of this problem is to show that all of the fine (spin-orbit) and hyperfine
structure for all of the states of the 3d4p configuration can be related to the
fundamental one-electron coupling constants: asg, ay,, bsg, byy, L34, and Cyp,.

Derive simple formulas for the hyperfine and fine structure for all |FJLSIM;) states of
the 3d4p configuration (consistent with neglect of AL # 0, AS # 0 matrix elements).

C. The six L-S states that arise from the 3d4p electronic configuration split into 12 fine-
structure J-components and, in turn, into 54 hyperfine F-components. The eigenenergies
are given (neglecting off-diagonal matrix elements between widely separated J-L-S fine
structure components) by ¢, sJ*I and, alternatively, by matrix elements of the
microscopic forms of the H" (and H*®) operators evaluated in the explicit product-of-
spin-orbitals basis set. The set of 12 {c;; s} can be related to four of the six fundamental
coupling constants listed at the end of part B. There are several tricks for expressing
many-electron reduced matrix elements in terms of one-electron reduced matrix
elements. One trick is to start with “extreme states”. Another is to exploit a matrix
element sum rule based on the trace invariance of matrix representations of H. For H*®
use *F, M, = 4 to get Copo Py M = 0 (your answer to part A) to get G, and (if you are brave:
optional) the sum rule for J = 3, M; =3 to get §3D. For H" consider only °F, M. = (4+5/2)
and (if you are brave: optional) 'F; M; = (3 +5/2).



