
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

5.73 Quantum Mechanics I
Fall, 2002

Professor Robert W. Field

Problem Set #9

DUE: At the start of Lecture on Friday, November 22.

Reading: Angular Momentum Handouts
C-TDL, pages 999-1024, 1027-1034, 1035-1042

Spherical components of a vector operator

    

V±1 = m2−1/2 Vx ± iVy[ ]
V0 = Vz

Scalar product of two vector operators

V∑W = (−1)µ V−µWµ
µ
∑ .

Scalar product of two tensor operators

  
T0

(0) A1, A2[ ] = (−1)µ Tµ
(ω) A1[ ]T±µ

(ω) A2[ ]
µ
∑ .

Problems:

1. CTDL, page 1086, #2.

2. CTDL, page 1089, #7.

3. CTDL, page 1089, #8.

4. A. d orbitals are often labeled xy, xz, yz, z2, x2–y2.  These labels are Cartesian tensor
components.  Find the linear combinations of binary products of x, y, and z that may be
labeled as T(2)

+2   and T(2)
0  .

B . There is a powerful formula for constructing an operator of any desired T
(Ω)

M   spherical
tensor character from products of components of other operators
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TM

(Ω) A1, A2[ ] = Aµ1 ,M−µ1 ,M
ω1ω 2Ω Tµ1

ω1( ) A1[ ]TM−µ1

ω 2( ) A2[ ]
µ1

∑

where A is a Wigner or Clebsch-Gordan coefficient, which is related to 3-j coefficients
as follows:

  

j1 j2 j3
m1 m2 m3 ≡ −(m1 + m2 )





 = −1( )j1 − j2 −m3 2j3 + 1( )−1/2 AM1M2 −M3

j1j2 j3 .

Use the T(Ω)
M   [A1,A2] formula to construct the spherical tensor T(3)

+2   and T(3)
0   components

of f orbitals by combining products of linear combinations of Cartesian labeled d and p
orbitals.  In other words, combine T(2) [x,y,z] with T(1)[x,y,z] to obtain T (3)

M
  as a linear

combination of products of 3 Cartesian components.

5.       Angular Momenta     

Consider a two-electron atom in the “electronic configuration” 3d4p.  The electronic states that
belong to this configuration are 3F, 1F, 3D, 1D, 3P, and 1P.  There are (2l1 + 1) (2l2 + 1) (2s1 + 1)
(2s2 + 1) = 60 spin-orbital occupancies associated with this configuration.  I am going to ask you
to solve several angular momentum coupling problems, using 3-j coefficients and the Wigner-
Eckart Theorem for states belonging to this configuration.  However, I do not expect you to
consider the anti-symmetrization requirement that is the subject of lectures #30 - 36.

Spin-orbitals in the uncoupled basis set are denoted by nlmlsms(i) where n is the principal
quantum number and i specifies the name of the assumed-distinguishable electron.  Since s = 1/2
for all electrons, we can use an abbreviated notation for spin-orbitals:  lλα/β where α
corresponds to ms = +1/2 and β to ms = –1/2.  The two-electron basis states are denoted

    
l l1 1 1 2 2 2

λ α β λ α β( ) ( ) , e.g.   3 1 2 1− −α β  where the first three symbols are associated with e–

#1 and the second three with e– #2.

The many-electron quantum numbers L, ML, S, MS are related to the one-electron spin-orbital
quantum numbers by

  

M

M

L
i

i

S
i

i

=

=

∑
∑

λ

σ

and L and S must be constructed from the proper linear combination of spin-orbital basis states.
For example,

  
3 4 1 33 11F M ML S, ,  = = = α α

This is a problem of coupled↔uncoupled transformation,
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L M L ML Ll l l l l l l l1 2 1 1 2 2 1 1 2 2 1 2

2

= ∑
λ

λ λ λ λ

where ML = λ1 + λ2 and l2 ≤ l1.  The same situation obtains for the spin part

  
Ss s M s s s s Ss s Ms S1 2 1 1 2 2 1 1 2 2 1 2

2

= ∑
σ

σ σ σ σ .

A. Use 3-j coefficients to derive the linear combination of six spin-orbital occupancies that
corresponds to the   3P0 MJ = 0〉   state.  The six basis states are    3–1α 11β〉,  3–1β 11α〉,
 30α 10β〉,  30β 10α〉,  31α 1-1β〉, and  31β 1-1α〉.  Note that you will have to perform
three uncoupled→coupled transformations:

l1λ1 l1λ1 → L l1 l 2ML

s1σ1s2σ2 → S s1s2MS

and

LMLSMS → JLSMJ.

I advise against using ladders plus orthogonality to solve this problem because MJ = 0 is
the worst possible situation for this method.

B . The atom in question has a nonzero nuclear spin, I = 5/2.  This means that you will
eventually have to perform one more uncoupled to coupled transformation:

r r r
F I J= +

→JM IM FJIMJ I F .

The nuclear spin gives rise to “Fermi-contact” and magnetic dipole hyperfine structure.
The hyperfine Hamiltonian is

            
H s I Ihf

i i i ia b= +( )∑ ∑ ∑ll .

The ∆F = ∆J = ∆L = ∆S = ∆I = 0 special form for the Wigner-Eckart theorem for vector
operators may be used to replace the above “microscopic” form of Hhf by a more
convenient, but restricted, form

Hhf = cJLSJ•I

because the microscopic Hhf contains 
    i

i ia∑ s  and 
      i

i ib∑ ll , both of which are vectors

with respect to J.
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H s I

J I

ef
i i i i

JLS

a b

c

= +( )

=

∑ ll ∑

∑

where cJLS is a reduced matrix element evaluated in the   JLSMJ  basis set

            
c JLS a b JLSJLS

i
i i i i= +( )∑ s ll

where

            
c JLSM a b JLSM c JLSM JLSMJLS J

i
i i i i J JLS J J= +( ) ′ = ′∑ s Jll | | .

cJLS is a constant that depends on each of the magnitude quantum numbers J, L, and S (but
not F and I).  I will review this derivation and show you how to evaluate the J, L, S
dependence of cJLS in a handout.

Similarly, the spin-orbit Hamiltonian

    

H sSO
i i ir= ( )∑ llζ ∑

may be replaced by the ∆L = 0, ∆S = 0 restricted form,

HSO = ζLSL • S.

The purpose of this problem is to show that all of the fine (spin-orbit) and hyperfine
structure for all of the states of the 3d4p configuration can be related to the
fundamental one-electron coupling constants:  a3d, a4p, b3d, b4p, ζ3d, and ζ4p.

Derive simple formulas for the hyperfine and fine structure for all  FJLSIMF〉 states of
the 3d4p configuration (consistent with neglect of ∆L ≠ 0, ∆S ≠ 0 matrix elements).

C. The six L–S states that arise from the 3d4p electronic configuration split into 12 fine-
structure J-components and, in turn, into 54 hyperfine F-components.  The eigenenergies
are given (neglecting off-diagonal matrix elements between widely separated J-L-S fine
structure components) by cJLSJ•I and, alternatively, by matrix elements of the
microscopic forms of the Hhf (and HSO) operators evaluated in the explicit product-of-
spin-orbitals basis set.  The set of 12 {cJLS} can be related to four of the six fundamental
coupling constants listed at the end of part B.  There are several tricks for expressing
many-electron reduced matrix elements in terms of one-electron reduced matrix
elements.  One trick is to start with “extreme states”.  Another is to exploit a matrix
element sum rule based on the trace invariance of matrix representations of H.  For HSO

use 3F4 MJ = 4 to get ζ3F
, 3P0 MJ = 0 (your answer to part A) to get ζ3P

, and (if you are brave:
optional    ) the sum rule for J = 3, MJ = 3 to get ζ3D

.  For Hhf consider only 3F4 MF = (4+5/2)
and (if you are brave:      optional    ) 1F3 MF = (3 + 5/2).


