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Lecture #9: Harmonic Oscillator:
Creation and Annihilation Operators

Last time
Simplified Schrodinger equation: & = o’x, a0 = (ku)"* /h

7 ., 2E
-+ —-——|y=0 dimensionless
reduced to Hermite differential equation by factoring out asymptotic form of y. The asymptotic
v is valid as § — oo. The exact , is

Hermite polynomials

lljv(x) = NVHV(EJ)eiéZ/z V= 0’ 1’ 2’ ce. 00

orthonormal set of basis functions
E =hov+%),v=0,1,2,...
even v, even function
odd v, odd function
v = # of internal nodes
what do you expect about <f> ? <f/> ? (from classical mechanics)
pictures
¥ zero-point energy
* tails in non-classical regions
* nodes more closely spaced near x = 0 where classical velocity is largest
* envelope (what is this? maxima of all oscillations)

* semiclassical: good for pictures, insight, estimates of J- v Opy , integrals without

solving Schrodinger equation

1/2
pE('x) = pclassical('x) = [Zﬂ(E - V(X))]
envelope of y(x) in classical region (classical mechanics)

> 1/4
W e = 2 {EZLVTJ forH.©.
— X

1
Yy e ——,
\4
[V}
velocity

spacing of nodes (quantum mechanics): # nodes between x, and x, is

2 X2
ZJ‘ pp(x)dx (because M(x) = h/p(x) and node spacing is A/2)

2 px(B)
# of levels below E: ZJ‘ - pp(x)dx “Semi-classical quantization rule”

“Action (h) integral.”
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Non-Lecture
Intensities of Vibrational fundamentals and overtones from

|
u(x) = p T X

I dx X"y, “selection rules”

m=n,n—2,...—n

~

Today some amazing results from a’,a (creation and annihilation operators)

*  dimensionless ¥, f) — exploit universal aspects of problem — separate universal from
specific — a,a" annihilation/creation or “ladder” or “step-up” operators

integral- and wavefunction-free Quantum Mechanics

all E, and , for Harmonic Oscillator using a,a’

values of integrals involving all integer powers of X and/or p

“selection rules”
integrals evaluated on sight rather than by using integral tables.

* K% K ¥ ¥

1. Create dimensionless X and 1:) operators from X and p

h 172 2.1 172 1/4
— | X, units =| 72! =/ recall E=ot"*x = LY
]/l(l) -1 h2

mt
N 1/2 . 1/2 —1
p=[mo]" p, units =[] =mlt = p

=0

x

replace X and p by dimensionless operators

I/-}:ﬁ_2+1 £2 hﬂ_w"2+_i~2
2u 2 2 2 mm
s =
5 2
hors, = .
= 7[ PR factor this?
O~ avf 2~ =
=—/|lip+x)-ip+x) |’
2 [( P )( P )] does this work? No, this attempt at factorization
\ \ generates a term I [ 1:9, )%] , which must be subtracted
21/25 21/2&’( N ~n A A
out: H= h_®(2aa—z[p’x )
2 e
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a=2"(%+ip
a'=2"(%-ip)
2 120, A
X=2""(a+a")
p=i2""(a'-a)

be careful about [):(,f)] #0

We will find that
ay, ="y, annihilates one quantum

a'y, =(v+1)?vy,, creates one quantum

H=ho(aa —1/2)=ho(a’a+1/2)-

This is astonishingly convenient. It presages a form of operator algebra that proceeds without
ever looking at the form of y(x) and does not require direct evaluation of integrals of the form

Ay =] dvyiAy,.
2. Now we must go back and repair our attempt to factor H for the harmonic oscillator.
Instructive examples of operator algebra.

* What is (jp+%)(=ip+5)?
RE
| I
53]
Recall [ p,x]=—if . (work this out by pif—xpf =[p,x]f).

What s i[ 5,5 ]?

i ;,,;]:i[hmm]-”{ir[m]

m@
=i[n2]" (=in)=+1.
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So we were not quite successful in factoring H . We have to subtract (1/2)x®:

over

This form for H is going to turn out to be very useful.

* Another trick, what about [ﬁ,ﬁ*] =7

[aar]=[2 (4 82 (e )] =5 5.0+ S (7

So we have some nice results. |H = hw[ﬁ*ﬁ + %} = hm[ﬁﬁ* - %}
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3. Now we will derive some amazing results a/most without ever looking at a wavefunction.

If y, is an eigenfunction of H with energy E,, then a"y, is an eigenfunction of H belonging to

eigenvalue E, + .

ﬁ(ﬁ\pv)zhw a

ninnt 1A
=hmw| a'aa +2a U8

Factor a' out front

a+—|a'y,

=a'hw| aa +1 8

A" =|aa |[+a'a=1+

A'a
H(a'y,)=4"ho|a'a+1+ }

H+ho
and PAI\|IV =E vy ,thus
ﬁ(ﬁﬁpv) =a"(E, +ho)y, =(E, + h(x))(ﬁ*\pv)

Therefore a "y, is eigenfunction of H with eigenvalue E, + h10.

So every time we apply a " to \,, we get a new eigenfunction of H and a new eigenvalue
increased by 7 from the previous eigenfunction. a * creates one quantum of vibrational
excitation.

Similar result for ay,.
H(ay,)=(E, -ho)(ay,).

a\y, is eigenfunction of H that belongs to eigenvalue E, — him. a destroys one quantum of
vibrational excitation.

We call a’,a “ladder operators” or creation and annihilation operators (or step-up, step-down).
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Now, suppose I apply a to y, many times. We know there must be a lowest energy eigenstate
for the harmonic oscillator because E, = V(0).

We have a ladder and we know there must be a lowest rung on the ladder. If we try to step
below the lowest rung we get

ﬁ \ljmin = O
27" [+ 3] W =0

Now we bring x and p back. dx

This is a first-order, linear, ordinary differential equation.

What kind of function has a first derivative that is equal to a negative constant times the variable
times the function itself?

2

d —CX )
 — Dcxe™
dx

IO
2h

HO -
2h

v =N_c2" _ (AGaussian)

The lowest vibrational level has eigenfunction, y,,;.(x), which is a simple Gaussian, centered at
x =0, and with tails extending into the classically forbidden E < V(x) regions.
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Now normalize:

Lecture #9

J.:o dx I\aninwminl =1=N,,

give factor of
2 in exponent

[recall asymptotic factor of y(x): e

j: dx e

Page 7

0]
ﬂxz

h

7'51/2

(noo/h)"™

1/4
()= #O
l|Im1n(x) ( Tt )

)
e 2h

This is the lowest energy normalized wavefunction. It has zero nodes.

—&2/2]

Gaussian integrals

dex e =t
0 2r
dex xe " = 1
0 2r°

2

dex xle ¥ = T
0

dex x2n+le—r2x2 _
0

JO dx x2ne—rx

- 2r211+2

NON-LECTURE

2.2 :n1/21'3'5"'(2n—1)

n+l_ 2n+l
2"r

By inspection, using dimensional analysis, all of these integrals seem OK.

We need to clean up a few loose ends.

1.

Could there be several independent ladders built on linearly independent v ., ¥, ?

Assertion: for any 1-D potential it is possible to show that the energy eigenfunctions are
arranged so that the quantum numbers increase in step with the number of internal nodes.

particle inboxn=1,2, ...

#nodes =0, 1, ..., which translates into the general rule

#nodes=n-1

harmonic oscillator

v=0,1,2,...
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# nodes = v

We have found a v, that has zero nodes. It must be the lowest energy eigenstate. Call
itv=0.

2. What is the lowest energy? We know that energy increases in steps of 7®.
E, . —E, =nho.

We get the energy of vy, by plugging vy, into the Schrodinger equation.

BUT WE USE A TRICK:

S
I
=*
e
&)
o>
+

&)
&>
_|_

H\Vmin = h(l) Wmin

N[ — DN~

butay . =0

SO i—\l\pmin :h(l) 0+% Wmin

min

E . =—ho!
2

Now we also know

Emin+n _Emin = nh(l)
OR
E,,, —E,=vho,thus E, =ho(v+1/2)

NON-LECTURE

3. We know
At _
a Wv - CVWV-H
ﬁ\vv = dvlvv—l

what are ¢, and d,?
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H 1 .. H 1 ..
———=2a'a, —+—=aa
ho 2 ho 2
(fi—l)w;=(v ———)w;=ﬁ%wv
hw 2 2
a‘ay, =wy,

)

for aa ' we use the trick

i ST Ant s ..
Now J- dx . aa'y, :J. dx |a'y,| because 42" is Hermitian
E3

Prescription for operating to the left is y 4= (ﬁ*w ) ) = (a+\|fv)

2
v+1l=

CV
. 1/2
c,=[v+1]
similarly for d,in ay, =dy, ,
* XA T A
dx y a'ay =v

in X and p.
2

2:|dv

d,=v" Again, verify phase choice

. dx|ay,

Page 9

Make phase choice and then verify by putting
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ﬁ“vv=(v+1)

1/2

WVH

P)-

A 172

a“"v - (V) \Ijv—l

1/\\7 — ﬁTﬁ member th

Re Tm €se five exceptionally
]/\\7 _ Portant equations|
Wv - V\llv

[a,a"]=1
Now we are ready to exploit the aA+ ,a operators.
Suppose we want to look at vibrational transition intensities.

+ * use a,a’

w(X) = py + X+ x> 2+

More generally, suppose we want to compute an integral involving some integer power of X (or

=2 (4 5)

a=2"(543)

N=a'a (number operator)
2 ~1/2 ( A A

¥=2""(a"+a)
p=2""i(a"-4)
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-5 /) h h
2 ~ A A ~ ~ ~ AtA A A ~ ~ At A
¥=——(a"+a)a" +a)=——[a"? +a*+a'a+aa’|=——[a"” +a’+2a'a+1]
2um 2um 2um
- huw —huw
2 ~ N At A A A ~ ~ PN
=== (a”+a>-afa—aa’)= a2 +a>—2a%a—1]
etc.

—~

~ p* k5 ho ho
H=5—ﬂ+5x2 =-— @7 +a’ 23" -1)+ (@7 +a’ + 28"+ 1) =No(a'a+1/2)

as expected. The terms in H involving a" +4a° exactly cancel out.

Look at an (37)" (a)" operator and, from m — n, read off the selection rule for Av. Integral is not

zero when the selection rule is satisfied.
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