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Lecture #9: Harmonic Oscillator: 

Creation and Annihilation Operators 


Last time 

1/2 x, α = (kμ)1/2Simplified Schrödinger equation: ξ = α n 

⎡ ∂2 2E ⎤− + ξ − ⎥ψ = 0 (dimensionless)⎢ 2
2 

∂ξ nω⎣ ⎦
reduced to Hermite differential equation by factoring out asymptotic form of ψ. The asymptotic 
ψ is valid as ξ2 →∞. The exact ψv is 

ψ v (x) = Nv Hv (ξ)e−ξ2 2 v = 0, 1, 2, … ∞ 

Hermite polynomials 

orthonormal set of basis functions 
Ev = nω(v + ½), v = 0, 1, 2, … 
even v, even function 
odd v, odd function 

v = # of internal nodes 
what do you expect about v v? ? (from classical mechanics)T V
pictures 

* zero-point energy 
* tails in non-classical regions 
* nodes more closely spaced near x = 0 where classical velocity is largest 
*	 envelope (what is this? maxima of all oscillations) 


ˆ
* semiclassical: good for pictures, insight, estimates of ∫ ψ* 
vOpψ v′  integrals without 

solving Schrödinger equation 
1/2
 

pE (x) = pclassical (x) = ⎣⎡2 μ(E − V (x))⎦⎤

envelope of ψ(x) in classical region (classical mechanics) 

1⎛	
= 21/2 ⎡ 2k / π2 ⎤

1/4 ⎞ 
⎜ψ *ψdx ∝ , ψ(x)	 for H. O.⎟envelope ⎢ ⎥E −V (x)⎜ vv	 ⎣ ⎦ ⎟⎝ velocity	 ⎠ 
spacing of nodes (quantum mechanics): # nodes between x1 and x2 is 

2 x2 

pE (x) dx  (because λ(x) = h/p(x) and node spacing is λ/2)
h ∫x1 

2 x+ (E )
# of levels below E: ∫x− (E ) 

pE (x) dx “Semi-classical quantization rule”
h 

“Action (h) integral.” 
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Non-Lecture 
Intensities of Vibrational fundamentals and overtones from 

1 2μ(x) = μ0 + μ1x + μ2 x +…  
2 

∫ dx ψ* xnψ “selection rules” v v+m 

m = n, n − 2, … −n 

v†Today some amazing results from a , â  (creation and annihilation operators) 

ˆ ˆ*	 dimensionless px, pp → exploit universal aspects of problem — separate universal from 

a, ˆ †specific → ˆ a  annihilation/creation or “ladder” or “step-up” operators 
* integral- and wavefunction-free Quantum Mechanics 
* all Ev and ψv for Harmonic Oscillator using â, â† 

* values of integrals involving all integer powers of x̂  and/or p̂
* “selection rules” 
* integrals evaluated on sight rather than by using integral tables. 

1. Create dimensionless px̂ and pp̂  operators from x̂ and p̂

1/2	 1/2⎡ n ⎤	 ⎡mf2t −1 ⎤ ⎛ ⎡ kμ⎤
1/4 ⎞ 

x̂ = xp̂, units = = f recall ξ=α1/2 x = x⎢ μω ⎥	 ⎢ ⎥ ⎜ ⎢ 2 ⎥ ⎟ 

]
⎣ ⎦ ⎣ mt −1 ⎦ ⎝ ⎣ n ⎦ ⎠


1/2 p̂ 2 ]1/2 t −1
p̂ = [nμω p, units = [mf t −1mt −1 = mf = p 

replace x̂  and 	p̂  by dimensionless operators 

p̂2 1 2 nμω k n 2v	 p̂ 2 + p̂H = + kx̂	 = p x
2 μ 2 2 μ 2 mω   � � nωnω 

22
 

nω 2
= ⎡ pp̂ 2 + xp̂ ⎤	 factor this?⎣ ⎦2 
nω = ⎡(ipp̂ + xp̂)(−ipp̂ + xp̂)⎦⎤?⎣2 does this work? No, this attempt at factorization 

↓ ↓ generates a term i ⎡ pp̂, px̂⎦⎤ , which must be subtracted⎣ 
21/2 ˆ 21/2 ˆ † 

v nω ⎛ 2ââ − i ⎡ pp̂, px̂⎤⎞a a
out: H = ⎣ ⎦⎜ � �⎟  ⎝ ⎠2 =− i 
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a = 2−1/2ˆ (xp̂ + ipp̂) 
† = 2−1/2â (xp̂ − ipp̂) 

x = 2−1/2 †p̂ (â + â ) 
pp = i2−1/2ˆ (â† − â) 

be careful about ⎡⎣x,p̂ pp̂ ⎤⎦ ≠ 0 

We will find that 

1/2 ψ( )âψ = v annihilates one quantumv v−1 

1/2 ψâ†ψ v = (v +1) v+1 creates one quantum 

† ˆHv = nω(ââ† −1/ 2) = nω(â a +1/ 2). 

This is astonishingly convenient. It presages a form of operator algebra that proceeds without 
ever looking at the form of ψ(x) and does not require direct evaluation of integrals of the form 

Aij = ∫ dx ψ* 
i Âψ j . 

2. Now we must go back and repair our attempt to factor Hv  for the harmonic oscillator. 

Instructive examples of operator algebra. 

* What is (ipp̂ + xp̂)(−ipp̂ + xp̂)? 

pp̂2 + xp̂2 + ipp̂xp̂ − ixp̂ pp̂
i⎡⎣ pp̂,xp̂⎤⎦ 

Recall [ p̂, x̂] = −in . (work this out by p̂xfˆ − x̂pfˆ = [ p̂, x̂] f ). 

What is i ⎡⎣ pp̂, xp̂⎤⎦ ? 

−1/2 ⎡ n ⎤
−1/2 

ˆi ⎡ pp, xp̂⎤⎦ = i[nmω] [ p̂, x̂]⎣ ⎢ ⎥⎣mω ⎦
2= i n

−1/2 −in) = +1.[ ] ( 
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vSo we were not quite successful in factoring H . We have to subtract (1/2)nω: 

⎛ † 1 ⎞ˆ v −aa
Hv = nω⎜ v2 ⎟ 

⎜ left ⎟⎝ over⎠ 

This form for Hv  is going to turn out to be very useful. 

†* Another trick, what about [â, â ]= ? 

i −i
2−1/2 ),2−1/2v† ˆ ˆ⎡⎣â,a ⎤⎦ = ⎡⎣ (ipp̂ + xp̂ (−ipp̂ + xp̂)⎤⎦ = ⎡⎣ pp, xp̂⎤⎦ + ⎡⎣xp̂, pp⎤⎦2 2 

1 1 = + = 1. 
2 2 

⎡ 1 ⎤ ⎡ 1 ⎤ˆ † ˆ † −So we have some nice results. H = nω â a + 
⎦⎥
= nω ââ

⎣⎢ 2 ⎣⎢ 2 ⎦⎥ 
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3. Now we will derive some amazing results almost without ever looking at a wavefunction. 

If ψv is an eigenfunction of Hv  with energy Ev, then â†ψ v  is an eigenfunction of Hv  belonging to 

eigenvalue Ev + nω. 

† ⎡ † ˆ 1 ⎤Hv avψ v = hω â a + a†ψ v( ) ⎣⎢ 2 ⎦⎥ ̂



⎡ 1 † ⎤
† ˆ † += hω â aâ â v⎣⎢ 2 ⎦⎥
ψ


Factor â†  out front 

⎡ 1 ⎤
 = â†hω ââ† + 
⎦⎥
ψ v⎣⎢ 2 

ââ† = ⎡⎣a,ˆ â† ⎤⎦ + â†â = 1+ â†â

⎡ 1 ⎤
v †ψ † hω † ˆH (â v ) = â â a +1+ ψ v⎣⎢ 2 ⎦⎥
 
Hv+hω 

and Ĥψ v = Evψ v, thus 
†vH (â†ψ ) = â (E + hω)ψ = (E + hω)(â†ψ )v v v v v 

Therefore â †ψv is eigenfunction of Hv  with eigenvalue Ev + nω. 

So every time we apply â † to ψv, we get a new eigenfunction of Hv  and a new eigenvalue 
increased by nω from the previous eigenfunction. â † creates one quantum of vibrational 
excitation. 

Similar result for âψv. 

vH (âψ ) = (E − nω)(âψ ) .v v v 

âψv is eigenfunction of Hv  that belongs to eigenvalue Ev – nω. â  destroys one quantum of 
vibrational excitation. 

We call â †, â  “ladder operators” or creation and annihilation operators (or step-up, step-down). 

revised 9/20/13 2:04 PM 
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Now, suppose I apply â  to ψv many times. We know there must be a lowest energy eigenstate 
for the harmonic oscillator because Ev ≥ V(0). 

We have a ladder and we know there must be a lowest rung on the ladder. If we try to step 
below the lowest rung we get 

âψmin = 0 

2−1/2 ⎡ipp̂ + xp̂⎤ = 0⎣ ⎦ψmin 
d−in 
dxNow we bring x̂ and p̂  back. 

⎡ −1/2 ˆ ⎛ μω⎞
1/2 ⎤ 

⎢i(2nμω) p + ⎝⎜ ⎠⎟ x̂⎥ψmin = 0 
⎣ 2n ⎦

1/2 1/2⎡ ⎤⎛ n ⎞ d ⎛ μω⎞⎢+ + x⎥ψmin = 0⎜ ⎟ ⎜ ⎟⎝ 2 μω⎠ dx ⎝ 2n ⎠⎣ ⎦ 
1/2 1/2
dψmin ⎛ ⎞ ⎛ μω⎞
= −⎜

2 μω
⎟ ⎜ ⎟ xψmin⎝ ⎠ ⎝ ⎠dx n 2n
 

μω
= − xψmin. 
n 

This is a first-order, linear, ordinary differential equation. 

What kind of function has a first derivative that is equal to a negative constant times the variable 
times the function itself? 

de−cx2 

−cx2

= −2cxe
dx 

μω 
c = 

2n 
μω 2− x
2n .ψmin = Nmine 

The lowest vibrational level has eigenfunction, ψmin(x), which is a simple Gaussian, centered at 
x = 0, and with tails extending into the classically forbidden E < V(x) regions. 
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Now normalize: 

μω∞ ∞ − x2 

ndx * = 1 = 2 dx e∫ ψminψmin Nmin ∫−∞ – ∞
 
give factor of
 

π1/2 
2 in exponent 

)1/2 (μω n 
μω

⎛ μω⎞ −
2 n 

x1/4 2 

eψmin (x )=⎜ ⎟⎝ πn ⎠
−ξ2 /2 ][recall asymptotic factor of ψ(x): e

This is the lowest energy normalized wavefunction. It has zero nodes. 
NON-LECTURE 

Gaussian integrals 

π1/2 

∫
∞ 2 2
 

dx e−r x =
 
0 2r
 

∞ 2 2 1
dx xe−r x =∫0 2r2 

π1/2 ∞ 2 2 

dx x2e−r x =∫0 4r3 

∞ 2 2 n!2n+1 −r xdx x e =∫0 2r2n+2 

∫
∞ 

2n+1 
2n −r2x2 

= π1/2 1⋅3⋅5·(2n −1)dx x e 2n+10 r
By inspection, using dimensional analysis, all of these integrals seem OK. 
We need to clean up a few loose ends. 

1. Could there be several independent ladders built on linearly independent ψmin1 
, ψmin2 

? 

Assertion: for any 1-D potential it is possible to show that the energy eigenfunctions are 
arranged so that the quantum numbers increase in step with the number of internal nodes. 

particle in box n = 1, 2, … 

# nodes = 0, 1, …, which translates into the general rule 

# nodes = n – 1 


harmonic oscillator v = 0, 1, 2, … 
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   # nodes = v
 

We have found a ψmin that has zero nodes. It must be the lowest energy eigenstate. Call 
it v = 0. 

2. What is the lowest energy? We know that energy increases in steps of nω. 

Ev+n – Ev = nnω. 

We get the energy of ψmin by plugging ψmin into the Schrödinger equation. 

BUT WE USE A TRICK: 

⎛ v† ˆ
1 ⎞Hv = nω a a +⎝⎜ 2 ⎠⎟ 

⎛ † 1 ⎞Hvψmin = nω⎝⎜ a
vâ + ⎠⎟ ψmin2 

but âψmin = 0 

⎛ 1 ⎞ so Hvψmin = nω⎝⎜ 0 + ⎠⎟ ψmin2 
1 = nω!Emin 2
 

Now we also know 
Emin +n − Emin = nnω 

OR 

E0+v − E0 = vnω, thus Ev = nω(v +1/  2)  

NON-LECTURE 

3. We know 

†ψâ = c ψv v v+1 

âψ = d ψv v v−1 

what are cv and dv? 

revised 9/20/13 2:04 PM
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⎛ 1 ⎞ ⎛ 1⎞Hv = nω⎝⎜ â
†â + ⎠⎟ = nω⎝⎜ ââ† − ⎠⎟2 2 

Hv 1 Hv 1 †† ˆ− = â a, + = ââ
nω 2 nω 2 

v⎛ H 1⎞ ⎛ 1 1⎞ 
⎝⎜ − ⎠⎟

ψ v = ⎝⎜ v + − ⎠⎟ ψ v = â†âψ v 
nω 2 2 2 

â † â ψv = vψv 

vâ † â is “number operator”, N . 

for ââ † we use the trick 

† † ˆ †ââ = â a +[a,ˆ â ] = Nv +1 
+1 

†2
 because ââ  is HermitianNow ∫ dx ψ*

vââ†ψ = ∫ dxv â†ψ v 

Prescription for operating to the left is ψ* 
vâ = (â*ψ v )* 

= (a†ψ v )* 

2 
cv +1 = v 

]1/2 cv = [v +1 
similarly for d in âψ = d ψv v v v−1 

∫ dx ψ* â†âψ = vv v Make phase choice and then verify by putting 
in x̂  and p̂ . 

2 2 âψ v∫ dx = dv 

dv = v1/2 Again, verify phase choice 
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â†ψ v = v +1( )1/2 ψ v+1 

âψ v = v( )1/2 ψ v−1 

Nv = â† â 

Nvψ v = vψ v 

â, ̂a†[ ] = 1 

v†, ̂Now we are ready to exploit the a a  operators. 

Suppose we want to look at vibrational transition intensities. 

μ(x) = μ0 + μ1 

More generally, suppose we want to compute an integral involving some integer power of x̂ (or 
p̂ ). 

† = 2−1/2â (−ipp̂ + xp̂) 
a = 2−1/2ˆ (ipp̂ + xp̂) 
Nv = â†â (number operator) 

x = 2−1/2p̂ (â† + â) 
pp = 2−1/2 i ˆˆ (a† − â) 

−1/2 −1/2
⎡ μω ⎤ ⎡2 μω ⎤ x̂ = xp̂ = (â† + â)⎢ ⎥ ⎢ ⎥⎣ n ⎦ ⎣ n ⎦

1/2 

]1/2 ˆ ⎡nμω ⎤ p̂ = [nμω pp = i(â† − â)⎢ ⎥⎣ 2 ⎦

x̂ + μ2 x̂
2 2 +…  

use â,a†v 
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n n nv2 †2 + ˆ † †2 + ˆx = (â† + â)(â† + â) = [â a2 + â†â + ââ ] = [â a2 + 2â†â +1]
2 μω 2 μω 2 μω 

p2 †2 + ˆ 2 − ˆ † ˆ † ) = 
−nμω [ †2 + ˆ 2 − 2 ˆ † ˆ ]2 = − nμω (â a a a − ââ â a a a −1

2 2
 

etc.
 

22p k 2 nωv = †2 + ˆ † ˆ †2 + ˆ † ˆ † ˆH + xv = − nω (â a2 − 2â a −1)+ (â a2 + 2â a +1) = nω(â a +1/ 2  )
2 μ 2 4 4 

†2 + ˆ 2as expected. The terms in Hv  involving â a  exactly cancel out. 

Look at an â† m 
â

n  operator and, from m – n, read off the selection rule for Δv. Integral is not( ) ( )
zero when the selection rule is satisfied. 
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