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Lecture #8: Quantum Mechanical Harmonic Oscillator 


Last time 

Classical Mechanical Harmonic Oscillator 

*	 V (x) = 1 
kx2  (leading term in power series expansion of most V(x) potential energy

2
 
functions) 


*	 x is displacement from equilibrium (x = 0 at equilibrium) 

*	 angular frequency ω = [k μ]1/2
 

m1m2
*	 μ = reduced mass 

m1 + m2


d 2 x k
From F = ma we get = −  x  [we get x(t) from this, not from ψ(x)]

dt 2 m
 
x(t) = Asin ωt + Bcosωt = C sin (ωt + φ)
 
get A,B or C,φ from initial conditions of pluck 


⎛ 2E ⎞
1/2
 

 turning point x± (E) = ± ⎝⎜ ⎠⎟ from E = V ( x± (E))
k 

ν,ω,τ 
T (t),T (kinetic energy)
 

V (t),V (potential energy)
 

Today 

*	 simplify Schrödinger Equation to get rid of constant factors 
*	 solution: Gaussian envelope × Hermite polynomials 
*	 pictures 
*	 semiclassical interpretation (not in most texts): combination of classical mechanics with 

λ(x) = h/p(x) (a unique source of insight) 
*	 vibrational transition intensities and “selection rules” 

Quantum Mechanical Harmonic Oscillator (McQuarrie, Chapters 5.5, 5.8-10) 

p̂2 1	 2H� = T� + V� = + kx̂
2 μ 2 

�2 ∂	 1 2= −  + kx̂
2 μ ∂x2 2 

We can “clean up” this equation by making the substitution 


revised 9/25/13 2:00 PM 



 

 �  

� � � �

� �

 

 

� �

�
 

�

 �

�

5.61 Fall, 2013 Lecture #8 Page 2 

( )1/2 ξ = α1/2 x where α =  kμ (ξ is dimensionless,
 

which makes the equation “universal”)
 
2 ∂2 2 ∂2 1/2 ∂2 ∂2⎛ k ⎞ = α = = ω2 ⎜ ⎟2 μ ∂x 2 μ ∂ξ2 2 ⎝ μ⎠ ∂ξ2 2 ∂ξ2
 

⎡ ∂ ∂ ∂ξ ⎤
because =⎢ ⎥∂x ∂ξ ∂x⎢ ax⎥ 
α1/2 ⎣ ⎦
 

1 1 ⎛ 1 ⎞
kx2 = k ⎜ ⎟ ξ2 

2 2 ⎝ α ⎠


1 ⎛ k ⎞
1/2 

1
ξ2= = ωξ2
⎜ ⎟2 ⎝ μ⎠ 2 

ω ⎡ ∂2 ⎤ ( much simpler form)= − + ξ2
⎢ ⎥2 ∂ξ2
⎣ ⎦

ψ(ξ) = Eψ ξ( )  
⎡ ∂2 2E ⎤ (entire differential equation, except

0 = −  + ξ2 −⎢ ⎥ ψ
∂ξ2 ω ψ, is dimensionless)⎣ ⎦

One can convert this into the Hermite differential equation by making the substitution 

ψ ξ( ) = e− ξ2 2 f ( )  and finding a new differential equation for f(ξ). The reason for doing this isξ
− ξ2 2that e  ensures that ψ → 0 as |ξ| → ∞.  Note that letting ξ2 → ∞ means that 2E/ ω is 

negligible with respect to ξ2 . What is the solution to the differential equation if we ignore the 
2E 

term?
ω 

This is a very clean form of the Schrödinger equation because all of the k,μ-specific factors are 
absorbed into a dimensionless ξ variable. Why would we want this? 

The Hermite polynomials (in integer powers of ξ) are solutions to the differential equation 

d 2 Hn dHn− 2ξ + 2nHn = 0 . (Hermite equation) 
dξ2 dξ 

There are very convenient “recursion relations” that relate the Hn–1 to the Hn, etc. 
dHn = 2nHn−1 ξ
dξ 

( ) . 

This looks like the effect of p̂  on Hn (because the leading term in Hn is ξn). 
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H ξ = 2ξ ξ − 2nH ξ( ) H ( ) ( ) , rearrangingn+1 n n−1 

1ξH (ξ) = H (ξ) + nH (ξ).n n+1 n−12 
This looks like the effect of x̂  on Hn. We will use this second recursion relation to compute 
integrals of the form 

∫ dξ ψ * 
nξmψ p . (n, m, p are integers). 

These recursion relations enable us to evaluate all integrals of the form 

m∫ ψ ( x̂n p̂ ) ψ dxv v+f

(we will postpone the actual evaluation until next lecture) and we derive the “selection rule” for 
nonzero integrals 

f = n + m, n + m – 2, … – (n + m) 

There is also a general expression (Rodrigues formula) for the Hn 

dn 
n ξ − ξHn ξ = ( )− e

2 

dξn e
2( ) 1

The Hermite equation is a well known (to mathematicians) differential equation. 

The solutions of the Schrödinger equation are 
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1/2 
⎛ kμ⎞ Gaussian α = ⎜ 2 ⎟⎝ ⎠	 envelope 

ensures ξ = α1/2x ψ → 0 

as x → ±∞s   o
1 ⎛ α ⎞

1/4 
− ξ2 2ψ v (x) =	 1/2 ⎜ ⎟ Hv ξ e( )⎠    (2v v!) ⎝ π a x

Hermite polynomialsvibrational	 Nv 
quantum 
number	 Normalization 
v = 0, 1, 2, … 

* Normalized 
* ψv(±∞) = 0 
* ψv(0) = 0 for odd-v (odd function) 

dψ v* = 0 for even-v (even function), to be worked out
dx x=0 

Ev = ω(v + ½) 

What do we know about orthogonality? Based on results derivable from postulates? 
Non-degenerate eigenvalues. 

∫ dxψ v 
*ψ v′ = δ vv′ orthonormal 

Semi-Classical Picture – applicable to all 1-dimensional problems for insight, prediction, and 
obtaining ψ(x) without solving any differential equation. 

Classical: 	T(x) = E – V(x) = p(x)2/2μ 
  p(x) = [2m(E – V(x))]1/2 

p(x) is momentum in classical mechanics but just a convenient function in quantum mechanics. 

⊕
 
h

Quantum: 	de Broglie λ =  
p 

valid not just for free particle or a piecewise constant potential 
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h
Semi-classical: λ(x) ≡ 

(x)pclassical 

* pair of nodes nearest to x are spaced by λ(x)/2. 

Qualitative Shapes of ψv(x): 

*	 exponentially damped envelope, extending into non-classical regions (!!!!) 
*	 oscillations within classically allowed region with number of internal nodes equal to the 

quantum number 
* even v, even function, antinode at x = 0 

* outer lobes (near x+ and x ) are largest [see McQuarrie, page 226, Fig. 5.10 right side]
–

*	 envelope within classically allowed region resembles what you expect from classical 
mechanics 

dxψ *(x)ψ(x)dx ∝ (slow speed↔high probability) 
vclassical 

1 1/2 
μ = {2 μ[E − V (x)]}vclassical = pclassical μ 

To get the proportionality constant, consider the fraction of time the particle is 
found between x and x + dx: 

⎧ probability of finding particle moving ⎫ ( )time ( x → x + dx) ⎪	 ⎪ dx vclassical x= ⎨	 ⎬ = 
time ( x−  to x+ ) ⎪⎩  to right between x and x + dx ⎪⎭ τ / 2  

1 2π ⎛ μ⎞
1/2 

, ω = [k / μ]1/2 τ = = = 2π ⎟ ⎡v = ω / 2π ⎤⎜ ⎣	 ⎦ν ω ⎝ k ⎠
−1/2 1/2 

dx	 dx 1 ⎛ μ⎞ ⎡ k / 2π2 ⎤
ψ *(x)ψ(x)dx = ) =	 1/2 ⎜ ⎟ = ⎢ ⎥ dx( )(τ 2 ⎧ 2 ⎫ π ⎝ k ⎠ ⎣ E − V (x) ⎦vclassical 

⎨ [E − V (t)]⎬
μ⎩ ⎭ 

⎡ k / 2π2 ⎤
1/2 

ψ *(x)ψ(x) =	 gives the classical average of ψ *(x)ψ(x) near x⎢ ⎥
⎣ E − V (x) ⎦

(but not the phase). [To get the classical envelope, assume that the maximum 
value of ψ*ψ is twice the average value. [This is always a good approximation 
for a rapidly oscillating always positive function.] Thus the envelope of 

1/2 ⎤⎡ 2k / π2 ⎤
ψ∗(x)ψ(x) envelope is ⎥.⎢ ⎥

⎣ E − V (x) ⎦ ⎥⎦ 
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* node spacing 
h

(1) recall λ =  , use classical ideas to qualitatively locate nodes, 
p(x) 

(2) 	 nodes are closest together when p is largest (near x = 0), envelope and 
node spacing allows you to sketch ψ∗(x)ψ(x) without solving a differential 
equation. 

Δ x	 1
(3) or compute a “phase integral” = (want to find value of Δx that is

λ(x) 2 
equal to λ/2, the distance between nodes) 

replace λ(x) by h p(x).  We get 

h	 x+λ/2 h⎡	 ⎤ p(x)Δ x =  as the distance, Δx, between nodes more accurately, dxp(x) = ⎢	 ∫x ⎥2	 ⎣ 2 ⎦

2 x2

phase integral pE (x)dx tells us how many nodes there are between x1 and x2
h ∫x1 

at energy E. This is the same as knowing how many bound energy levels lie at or 
below E. 
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* non-classical tails [(extend into region where E < V(x)] 
* x+ lobe positive by convention 
* lobes nearest x  and x+ largest–

* nodes closest together near x = 0 
* no zero crossings in classically forbidden region 

What about pictures of ψ *(x)ψ (x) ? 

Non-Lecture 

What do we do with these HO wavefunctions? 

1. calculate relative intensities of vibrational transitions 
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2.	 Use perturbation theory (Lectures #14, #15 and #18) to compute 
consequences of higher than quadratic terms in V(x) 

e.g. for Morse oscillator 

Ev = ωr (v + 1/ 2  ) − ω (v x + 1/ 2  )2 (~ means cm–1 units) 

hc 
“anharmonicity”, comes mostly 
from x3 and x4 terms in V(x) 

Spectral intensities 


vf2 

I fi ∝ hν∫ dx ψ * ( ) ψμ xvf	 vi 

vielectric dipole moment 
(HCl vs. H2, N2, O2, Cl2) 
(think of radio antenna) 

Δv = 0 
pure rotation 
spectrum 

Δv = ±1 Δv = 0, ±2 
vibrational vibrational 
fundamental overtone 

Two contributions to vibrational overtone transitions 
* mechanical anharmonicity (Morse potential) 
* electronic anharmonicity (higher derivatives of μ(x)) 
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In the following we will look only at the electronic anharmonicity contributions. 

* ⎡ 1 2 ⎤dxψ μ0 + μ1x + μ2 x ψ = μ0 ∫ dx ψ * ψ∫ v f ⎢ ⎥ vi v f vi ⎣ 2 ⎦ �  
ortho­
normal 
δ v f vi 

* μ2 *+ μ1 ∫ dx ψ xψ + ∫ dx ψ x2ψv f vi v f vi�  j  2j jj 
see recursion 
relationship 

H (ξ) = 2ξ (ξ) − 2nH ξ
H ( )n+1 n n−1 

1ξH (ξ) = H (ξ) + n H ( ) 
n n+1 �n−1 ξ
2 �

ψ ψxψ v v+1 v−1 

selection rule: Δv = ±1 

for x2 term (evaluate in two steps) 

12 Hξ = ξH + nξHn n+1 n−12 
1 ⎛ 1 ⎞ ⎛ 1 ⎞= H + (n + 1)H ⎟ + n H + (n − 1)H⎜ n+2 n ⎜ n n−2 ⎟2 ⎝ 2 ⎠ ⎝ 2 ⎠

Δ v = 0, ±2 

Next time: a†, a treatment 
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