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Lecture #6: 3-D Box and Separation of Variables 


Last time: 

Build up to Schrödinger Equation: some wonderful surprises 

* operators 
* eigenvalue equations 

∂
* operators in quantum mechanics – especially x̂ = x and p̂ = −inx	 ∂x 
* non-commutation of x̂  and p̂x : related to uncertainty principle 
*	 wavefunctions: probability amplitude, continuous! therefore no perfect 

localization at a point in space 
* expectation value (and normalization) 

HHψ = Eψ 
* Free Particle 
* Particle in 1-D Box (first viewing) 

Today: 

1. 	 Review of Free Particle 
some simple integrals 

2. 	 Review of Particle in 1-D “Infinite” Box 
boundary conditions 
pictures of ψn(x), Memorable Qualitative features 

3. 	 Crude uncertainties, Δx and Δp, for Particle in Box 

4. 	3-D Box 
separation of variables 
Form of E  and ψn n ,n n ny ,nzx , y z x , 

1. 	 Review of Free particle: V(x) = V0 

+ ikx + be− ikxψ (x) = ae  complex oscillatory (because E > V0)k 

nk
2( )

Ek =	 +V0 k is not quantized
2m 
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∞ 2 + 2 + a *be−2ikx + ab *e2ikx ⎤⎦dx(x)
2 

dx = 
∞ ⎡ a bk∫−∞ψ ∫−∞ ⎣

(Note what happens to= a 
2 ∞+  b 

2 ∞+  a *b0 + ab *0  +ikx)the product e–ikxe

can’t normalize ψ = aeikx to 1. 

∞ ≈ 2− ikx + ikx∫−∞ 
dx a 

2 
e e = ∫−∞ 

dx a 

which blows up. Instead, normalize to specified # of particles between x1 and x2. 

ikx + be− ikx 2
Questions: Is ψ k (x) = ae  an eigenfunction of p̂ ? p ? What do your answers mean?x x 

  Is  eikx eigenfunction of p̂ ? What eigenvalue?x 

2. Review of Particle in 1-D Box of length a, with infinitely high walls 

“infinite box” or “PIB” 

In view of its importance in starting you out thinking about quantum mechanical particle in a 
well problems, I will work through this problem again, carefully. 

V(x) = 0 0 ≤ x ≤ a
 
V(x) = ∞ x < 0, x > a
 

Region I Region II Region III 

Classically Classically 
E forbidden forbidden 

because 
E < V 

x 

0 a 

Consider regions I and III. 
E < V(x) 
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2 d 2 

HH = −  
n + ∞  
2m dx2 

n2 d 2ψ = ∞− E)ψ(

2m dx2 
' - no matter what finite 

finite	 value we choose for 
E , the Schrödinger 
equation can only be 
satisfied by setting
ψ (x ) =  0 
throughout regions
 I and III. 

So we know that ψ(x) = 0 x < 0, x > a. 

But ψ(x) must be continuous everywhere, thus ψ(0) = ψ(a) = 0. 
These are boundary conditions. 

Note, however, that for finite barrier height and width, we will eventually see that it is 
possible for ψ(x) to be nonzero in a classically forbidden [E < V(x)] region. 
“Tunneling.” (There will be a problem on Problem Set #3 about this.) 

So we solve for ψ(x) in Region II, which looks exactly like the free particle because V(x) = 0 
in Region II. Free particle solution are written in sin, cos form rather than e±ikx form, because 
application of boundary conditions is simpler. [This is an example of finding a general 
principle and then trying to find a way to violate it.] 

ψ (x) = Asin kx + Bcoskx 

Apply boundary conditions 

ψ (0) = 0 = 0 + B → B = 0 

nπψ (a) = 0 = Asin ka ⇒ ka = nπ , kn = 
a 

∞ a ⎛
Normalize: 1 = ∫−∞ 

dxψ *ψ = A2 ∫0 
dxsin2 nπ

a

x → A = ⎝⎜ 
2 

a ⎟
⎞
⎠

1/2

 (Picture of normalization 

integrand suggests that the value of the normalization integral = a/2) 

Non-Lecture 
Normalization integral for particle-in-a-box eigenfunctions 
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⎛ nπ ⎞ψ n (x) = Asin ⎝⎜ x⎠⎟ a 

Normalization (one particle in the box) requires 
∞ 

dxψ *ψ = 1.∫−∞ 

For V(x) = 0, 0 ≤ x ≤ a infinite wall box: 

0 a ∞ a2
1 = dxψ *ψ + dxψ *ψ + dxψ *ψ = 0 + A ∫ dxsin2 nπ 

x + 0∫−∞ ∫0 ∫a 0 a 
a2

1 = A ∫ dxsin2 nπ 
x 

0 a 

Definite integral 

dysin2 y = π 2∫0 

π 

nπ 
change variable: y = x 

a 
nπ a

dy = dx ⇒ dx = dy 
a nπ 

limits of integration: 

x = 0 ⇒ y = 0 

x = a ⇒ y = nπ 


a nπ ⎛ a ⎞ a ⎛ π ⎞ a
∫ dxsin2 nπ 

x = ∫ ⎝⎜ ⎠⎟dysin2 y = n⎝⎜ ⎠⎟ = 
0 a 0 nπ nπ 2 2 

2 a ⎛ 2⎞
1/2 

1 = A , thus A = ⎝⎜ ⎠⎟2 a 
1/2 

(A very good equation to remember!) 
⎛ 2⎞ ⎛ nπ ⎞ψ n (x) = ⎝⎜ ⎠⎟ sin ⎝⎜ x⎠⎟ a a 

End of Non-Lecture 
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Find En. These are all of the allowed energy levels. 

HHψ n = Enψ n 

2 d 2 

− 
n ψ n = Enψ n2m dx2 

2n
)2 h2 1 n2π 2 2 ⎛ h2 ⎞+ (k = E = = nn n 2 ⎜ ⎟22m 4π 2 2m a ⎝ 8ma ⎠

2π 2n
2 E1a

n = 1, 2, … 

n = 0 would correspond to empty box 


Energy levels are integer multiples of a common factor, En = E1n
2. (This will turn out to be 

of special significance when we look at solutions of the time-dependent Schrödinger 
equation (Lecture #13). 

.............
.... .............
.... ........... .... 
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...... ...... ...... ..... ...... ..... ...... .......... ........... ......... .... ............. ........... ........... .......... .................... .................. 
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............. .... ........... .... ........... .... ............. ......... ..... ......... .... ........ ...... ...... ...... ..... ...... ..... ...... ........... .......... 

......

............ .... .............. .... ............... .... ................ .... 
................. ..... 

.............................
.... 

............................
...... ..........................

...... ......................... ...... ........................ ...... 

................. ...... .............. .... ............... .... .............. ........ ................ ........... ...... .......... ...... .......... ...... .......... ...... ........... ..... 
....................... ...... ....................... ...... ...................... ...... ..................... ...... ...................... ...... ....................... ....... ...................... ...... ........................ ..... .......................... ..... 

............. .... 

........................... ..... 

.............. .... ............... .... ................
......
............... 

.......................
....................

............. .... 

These are “stationary states”. You are not 
allowed to ask, if the system is in ψ3, how 
does the particle get from one side of a....... -E3 node to the other. 

How would you sample ψ3? What would 
you measure? [Quantum Mechanics is full 
of what/how is “in principle” measurable, 
hence knowable.] 

Could you measure ψ3? 
..... -E2 

Could you measure |ψ3|2? 

..... -EEEEE 1 

0
 
0 a
 

zero point E 
All bound systems have their lowest energy level at an energy greater than the energy of the 
bottom of the well: “zero-point energy” 

This zero-point energy is a manifestation of the uncertainty principle. Why? What is the 
momentum of a state with zero kinetic energy? Is this momentum perfectly specified? What 
does that require about position? 
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3. Crude estimates of Δx, Δp (we will make a more precise definition of uncertainty in 
the next lecture) 

Δx = a for all n (the width of the well) 

⎛ nπ ⎞Δ p = +
 
nk (

 

= 2n− −nk ) = 2n⎜ ⎟n n n kn ⎝ a ⎠
p  to p  to
 
right left
 

2 ⎛ nπ ⎞ = h⎜ ⎟ = hn a 
2π ⎝ a ⎠

The joint uncertainty is 
hn

Δ xn Δ pn = (a) = hnwhich increases linearly with n. 
a 

n = 0 would imply Δpn = 0 and the uncertainty principle would then require Δxn = ∞, which is 
impossible! This is an indirect reason for the existence of zero-point energy. 

Since the uncertainty principle is 

ΔxΔpx = h 
it appears that the n = 1 state is a minimum uncertainty state. It will be generally true that 
the lowest energy state in a well is a minimum uncertainty state. 

4. Use the 3-D box to illustrate a very convenient general result: separation of 
variables. 

Whenever it is possible to write HH in the form: 

HH = ĥ + ĥ + ĥ (provided that the additive terms are mutually commuting) x y z 

p̂x 
2 

+Vx (x̂) + etc. 
2m 

it is possible to obtain ψ and E in separated form (which is exceptionally convenient!): 

ψ (x, y, z) =ψ (x)ψ (y)ψ (z)x y z 

E = Ex + Ey + Ez . 

Or, more generally, when 
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H = ˆH ∑ 
n 

hi (qi ) 
i=1 

then 

n 

ψ =∏ψ i (qi ) 
i=1 

E =∑ 
n 

Ei 
i=1 

Consider the specific example of the 3-D box with edge lengths a, b, and c.
 

V(x,y,z) = 0 0 ≤ x ≤ a, 0 ≤ y ≤ b, 0 ≤ z ≤ c, otherwise V = ∞. 


This is a special case of V x( , y, z) = V + V + V .
x y z 

2 ∂2 ∂2 ∂2−n ⎡ ⎤
T ( p̂x , p̂y , p̂z ) = ⎢ 2 + 2 + 2 ⎥2m ⎣∂x ∂y ∂z ⎦

∇2  “Laplacian” 

2 2 2⎡−n ∂2 ⎤ ⎡−n ∂2 ⎤ ⎡−n ∂2 ⎤
HH (x, y, z) = ⎢ 2 + Vx (x̂)⎥ + ⎢ 2 + Vy (ŷ)⎥ + ⎢ 2 + Vz (ẑ)⎥

⎣ 2m ∂x ⎦ ⎣ 2m ∂y ⎦ ⎣ 2m ∂z ⎦
ˆ= h + ĥ + ĥx y z 

Schrödinger Equation 

⎡⎣ĥx + ĥy + ĥz 
⎤⎦ψ (x, y, z) = Eψ (x, y, z) 

try ψ (x, y, z) =ψ (x)ψ (y)ψ (z),x y z 

where ĥi  operates only on ψ i ,

 and ĥiψ i = Eiψ i  are the solutions of the 1-D problem. 

ĥψ (x, y, z) =ψ ψ ĥψ =ψ ψ E ψ = E ψ ψ ψ = E ψ (x, y, z)x y z x x y z x x x x y z x

(does not operate on y, z)
 

ˆ
hψ = E ψ ψ ψy y x y z 

ĥzψ = Ezψ ψ yψx z 

ĥxψ + ĥyψ + ĥzψ = HHψ = (Ex + Ey + Ez )ψ . 

So we have shown that, if HH  is separable into additive (commuting) terms, then ψ can be 
written as a product of independent factors, and E will be a sum of separate subsystem 
energies. Convenient! 
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So, for the a,b,c box 

)2 a 
1/2 n π h2 

ψ n = ( sin x , En = nx 
2

2x xa 8ma
2∫

a 
dxψ nx = 1 

0 

h2 

)1/2 n π
ψ n = (2 b sin y , normalized, E = n2 

y y 

)
b n y 8mb2 

1/2 n π 2zψ = (2 c sin , normalized, E = n
h2 

nz c nz z 8mc2 

2 2 2h2 ⎡ n ny n ⎤ 
E = x + + z 

nx ,ny ,nz ⎢
⎣ 

2 b2 2 ⎥
⎦8m a c

⎛ 8 ⎞
1/2 

nxπ nyπ nzπψ n n n = sin sin sin . 
x y z ⎝⎜ ⎠⎟abc a b c 

If each of the factors of ψ ,nz
 is normalized, it’s easy to show thatnx ,ny 

2 

∫ dx dydz ψ = 1nxnynz 

because each of the integrations acts on only one separable factor. 

This looks like a lot of algebra, but it really is an important, convenient, and frequently 
encountered simplification. 

We use this separable form for ψ and E all of the time, even when HH  is not exactly separable 
(for example, a box with slightly rounded corners). 

H (1) H (0)+ HHH = H

to leave out. 
“zero-order energies.” 

a separable Hamiltonian that 
we use to define a complete 

at 
e 

a correction term thata
contains what we would likec
tset of “basis functions” and 

revised 9/3/13 3:47 PM 



 

 

 

 

 

 

 

 

5.61 Fall 2013 Lecture #6 page 9 

This is the basis for our intuition, names of things, and approximate energy level formulas. 


H (1)
H  contains small inter-sub-system coupling terms that are dealt with by perturbation 
theory (Lectures #15, #16 and #19). 

NEXT TIME we are going to look at some properties of a particle in a box.  Some of these 
properties are based on simple insights, while others are based on actually evaluating the 
necessary integrals. 

x 
2x

2σ x 
2 = x − x 

2 
“variance” 

px 

2px 

σ px 

σ xσ px 

FWHM
 

Gaussian G(x − x0,σ ) [x0  is “center”, σ  is “width” ]
x x

Lorentzian L(x − x0,σ x ) 

Minimum Uncertainty Wavepacket 
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