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Lecture #6: 3-D Box and Separation of Variables

Last time:
Build up to Schrodinger Equation: some wonderful surprises

*  operators
* eigenvalue equations
* operators in quantum mechanics — especially x=x and p,_ = —iha—
X
* non-commutation of X and p : related to uncertainty principle
* wavefunctions: probability amplitude, continuous! therefore no perfect
localization at a point in space
* expectation value (and normalization)

ﬁw =Ey
* Free Particle
* Particle in 1-D Box (first viewing)

Today:

I. Review of Free Particle
some simple integrals

2. Review of Particle in 1-D “Infinite” Box
boundary conditions
pictures of y,(x), Memorable Qualitative features

3. Crude uncertainties, Ax and Ap, for Particle in Box

4. 3-D Box
separation of variables

Form of E”n and -
1. Review of Free particle: V(x) =V,
V()= ae™ +be™™ complex oscillatory (because E > V)
nk)’
E = u+V0 k is not quantized
2m
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J.:O‘W|k| (x)‘zdx = I:[|a|2 +|b|2 +a*be ™ 1+ ab *ezikx]dx

2 2 te what h t
=[af cot|Bf ot a*b0+ab*0  [Now vhat happens i
e product e™'e™")

can’t normalize | = ae™ to 1.

J- dx|042 e et = JN dx|a|2
which blows up. Instead, normalize to specified # of particles between x, and x,.

~

ik —ikx L C D 2
“+be™ an eigenfunctionof P 7 P 7 What do your answers mean?

Questions: Is Y, (x)=ae

Jikx N . - 9 . 9
Is ¢™ eigenfunction of P ? What eigenvalue?

2. Review of Particle in 1-D Box of length a, with infinitely high walls

“infinite box” or “PIB”

In view of its importance in starting you out thinking about quantum mechanical particle in a
well problems, I will work through this problem again, carefully.

Vix)=0 O<x=<a
V(x) = x<0,x>a
Region I Region II Region II1
Classically Classically
E forbidden forbidden
because
E<V
X
- - )
0 a

Consider regions I and III.
E< V()
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~ o d

2m dx’
nody
LAY (w-E)y

2
2m dx LT
———— no matter what finite
finite value we choose for

E, the Schrodinger
equation can only be
satisfied by setting

w(x) =0
throughout regions
I and III.

So we know that y(x) =0 x<0,x>a.

But y(x) must be continuous everywhere, thus y(0) = y(a) = 0.
These are boundary conditions.

Note, however, that for finite barrier height and width, we will eventually see that it is
possible for y(x) to be nonzero in a classically forbidden [E < V(x)] region.
“Tunneling.” (There will be a problem on Problem Set #3 about this.)

So we solve for y(x) in Region II, which looks exactly like the free particle because V(x) =0
in Region II. Free particle solution are written in sin, cos form rather than ¢**** form, because
application of boundary conditions is simpler. [This is an example of finding a general
principle and then trying to find a way to violate it.]

¥ (x)= Asinkx + Bcos kx
Apply boundary conditions
y(0)=0=0+B—>B=0

v(a)=0= Asinka = ka = nr, k="

- u 2 172
Normalize: 1= J. dxy *y = A’ Io dxsin? nnx —> A= (—j (Picture of normalization
- a a

integrand suggests that the value of the normalization integral = a/2)

Non-Lecture
Normalization integral for particle-in-a-box eigenfunctions
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v (x)= Asin(ﬂx)
a
Normalization (one particle in the box) requires f dxy *y=1.

For V(x) =0, 0 < x < a infinite wall box:

1= J'_Omdxl// g+ | dayry+ [ dapry =0+[A] [ dxsin’ %x+0

1=|Af [ dusin® “* x
0 a

Definite integral
jo” dysin®y =1/2

niw

change variable: y= 736

dy = ﬂdx:>dx:idy
a nw

limits of integration:

x=0=y=0
X=a=y=nn

a . LNT m( a . a (w) a
desm —x:J — ldysin" y=—n| — |=—
0 a 0 \ nw nw \ 2 2
172
1:|A|2§, thusA:(%j
a

v (x)= (3) sin(ﬂx)
a a

(A very good equation to remember!)

End of Non-Lecture
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Find E,. These are all of the allowed energy levels.

ﬁl//n = Enl//n
nod

peere S Ey,

2 2 2.2 2
+h—(k,,)2=E 1 ﬂ:nz( h J

- 2~ 2
2m Ll " Am’ 2m a 8ma2
nrn I
2 E,

n=1,2,...
n = 0 would correspond to empty box

Energy levels are integer multiples of a common factor, E, = E;n*>. (This will turn out to be

of special significance when we look at solutions of the time-dependent Schrodinger
equation (Lecture #13).

These are “stationary states”. You are not
allowed to ask, if the system is in Y, how
does the particle get from one side of a
Es
\/ node to the other.

How would you sample y;? What would
you measure? [Quantum Mechanics is full
of what/how is “in principle” measurable,
hence knowable.]

Could you measure y;?

E,
\/ Could you measure [y;|*?

0 .
“ zero point £

All bound systems have their lowest energy level at an energy greater than the energy of the
bottom of the well: “zero-point energy”

This zero-point energy is a manifestation of the uncertainty principle. Why? What is the

momentum of a state with zero kinetic energy? Is this momentum perfectly specified? What
does that require about position?
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3. Crude estimates of Ax, Ap  (we will make a more precise definition of uncertainty in
the next lecture)

Ax = a for all n (the width of the well)

Ap, =-+hk, —(~hk,) = 20|k | = 2h(ﬂj
L1 a

fa
= ih(ﬂj = hn/a
2 \ a

The joint uncertainty is

h
Ax, Ap, = (a)—n = hnwhich increases linearly with n.
a

n =0 would imply Ap, = 0 and the uncertainty principle would then require Ax, = e, which is
impossible! This is an indirect reason for the existence of zero-point energy.

Since the uncertainty principle is

AxAp.=h

it appears that the n = 1 state is a minimum uncertainty state. It will be generally true that
the lowest energy state in a well is a minimum uncertainty state.

4. Use the 3-D box to illustrate a very convenient general result: separation of
variables.

Whenever it is possible to write H in the form:
H= ﬁx + ﬁy + ﬁz (provided that the additive terms are mutually commuting)

A2
Pu V_(X)+etc.
2m

it is possible to obtain Y and E in separated form (which is exceptionally convenient!):
v (6.3,2) =y, (W, 0. (2)
E=E +E+E..

Or, more generally, when
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H= iﬁi(q,»)
i=1

then
Y= H v.(q,)
i=1

E=YE
i=1

Consider the specific example of the 3-D box with edge lengths a, b, and c.
V(x,y,2) =0 O0<x=<a,0=<y=<b,0=<z=<c,otherwise V = .
This is a special case of V(x,y,z) =V + K +V..

W[ 7, P
ox> dy* 97

T(p,.p,.h.)=

2m
I V2 “Laplacian” I
~ —-n* 9 . —-h* 9 . ~h* 9 .
H(x,y,z)=| —=—=+V, +| —=—+V +| —=—+V
(x.72) {Zm ox’ x(x)} [Zm 9y’ y(y)} {Zm 07’ Z(Z)}
=h, +h +h,

Schrodinger Equation

[+ b+, Jwry. 0= By (ey.o)
try y(x,y,2) =y (Y (MY (2),
where }Azi operates only on v/,

and flil// ;= Ey, are the solutions of the 1-D problem.

lleW(x,y,Z) = l//yl//zl:\lXWJc = I//yl//zExWx = ExWnyl//z = Exl//(x’y’z)
L(does not operate on y,z)

hy=Eyyy.

hy=Ey.yy.

fle// +fzyl// +fzzl// = I?h// = (Ex +E, +EZ)1//.

So we have shown that, if H is separable into additive (commuting) terms, then Y can be

written as a product of independent factors, and E will be a sum of separate subsystem
energies. Convenient!
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So, for the a,b,c box

2 . nmw , W
=(2/a) sin—=— , E =
l//n,( ( / ) a n, nx Smaz
Jadxwfx =1
0
2
2 . T : , h
y, =(2/b)  sin——, normalized, E, =n] >
’ b ’ 8mb
2
12 . N : h
v, = (2/c) sin——, normalized, E =n’
" C " 8mc?
h2 n2 n2 n2
— X + Y + Z
Moy, m a2 b2 2
1/2
— 8 : l”lxﬂ: l’lyﬂ' nzn-
=| — | sin sin sin
WHxnynZ
abc a b c

If each of the factors of y is normalized, it’s easy to show that

nynyn,

J dx dy dz‘l//nxnynz 2 =1

because each of the integrations acts on only one separable factor.

This looks like a lot of algebra, but it really is an important, convenient, and frequently

encountered simplification.

page 8

We use this separable form for y and E all of the time, even when H is not exactly separable

(for example, a box with slightly rounded corners).

I
)
S

H

a separable Hamiltonian that a correction term that
we use to define a complete contains what we would like

set of “basis functions” and to leave out.

“zero-order energies.”
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This is the basis for our intuition, names of things, and approximate energy level formulas.

~) . . . . .
H  contains small inter-sub-system coupling terms that are dealt with by perturbation

theory (Lectures #15, #16 and #19).

NEXT TIME we are going to look at some properties of a particle in a box. Some of these
properties are based on simple insights, while others are based on actually evaluating the
necessary integrals.

{x)
()

o,

<x2> - <x>2 “variance”
(p.)
(p2)
GP.Y

0.0,

FWHM

Gaussian G(x—x,,0,) [x,is “center”, o is “width”]
Lorentzian L(x-x,,0,)

Minimum Uncertainty Wavepacket
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