Lecture #6: 3-D Box and Separation of Variables

Last time:

Build up to Schrödinger Equation: some wonderful surprises

- * operators
- * eigenvalue equations
- * operators in quantum mechanics especially $\hat{x} = x$ and $\hat{p}_x = -i\hbar \frac{\partial}{\partial x}$
- * non-commutation of \hat{x} and \hat{p}_x : related to uncertainty principle
- * wavefunctions: probability amplitude, <u>continuous</u>! therefore no perfect localization at a point in space
- * expectation value (and normalization)

$$\widehat{H}\psi = E\psi$$

- * Free Particle
- * Particle in 1-D Box (first viewing)

Today:

- 1. Review of Free Particle some simple integrals
- 2. Review of Particle in 1-D "Infinite" Box boundary conditions pictures of $\Psi_n(x)$, Memorable Qualitative features
- 3. Crude uncertainties, Δx and Δp , for Particle in Box
- 4. 3-D Box separation of variables Form of E_{n_x,n_y,n_z} and ψ_{n_x,n_y,n_z}
 - 1. Review of Free particle: $V(x) = V_0$

 $\psi_{|k|}(x) = ae^{+ikx} + be^{-ikx}$ complex oscillatory (because $E > V_0$)

$$E_k = \frac{\left(\hbar k\right)^2}{2m} + V_0 \qquad k \text{ is not quantized}$$

5.61 Fall 2013 Lecture #6 page 2

$$\int_{-\infty}^{\infty} |\psi_{|k|}(x)|^2 dx = \int_{-\infty}^{\infty} \left[|a|^2 + |b|^2 + a * b e^{-2ikx} + ab * e^{2ikx} \right] dx$$

$$= |a|^2 + |b|^2 + a * b + ab * 0$$
(Note what happens to the product $e^{-ikx} e^{+ikx}$)

can't normalize $\psi = ae^{ikx}$ to 1.

$$\int_{-\infty}^{\infty} dx |a|^2 e^{-ikx} e^{+ikx} = \int_{-\infty}^{\infty} dx |a|^2$$

which blows up. Instead, normalize to specified # of particles between x_1 and x_2 .

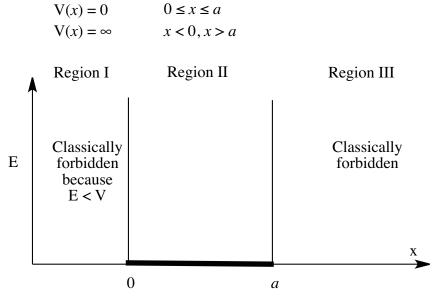
Questions:

Is
$$\psi_k(x) = ae^{ikx} + be^{-ikx}$$
 an eigenfunction of \hat{p}_x ? \hat{p}_x^2 ? What do your answers mean? Is e^{ikx} eigenfunction of \hat{p}_x ? What eigenvalue?

2. Review of Particle in 1-D Box of length a, with infinitely high walls

In view of its importance in starting you out thinking about quantum mechanical particle in a well problems, I will work through this problem again, carefully.

 $0 \le x \le a$



Consider regions I and III.

E < V(x)

5.61 Fall 2013 Lecture #6 page 3

$$\widehat{H} = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + \infty$$

$$\frac{\hbar^2}{2m} \frac{d^2 \psi}{dx^2} = (\infty - E) \psi$$
no matter what finite value we choose for E, the Schrödinger equation can only be satisfied by setting $\psi(x) = 0$ throughout regions I and III.

So we know that $\psi(x) = 0$ x < 0, x > a.

But $\psi(x)$ must be continuous everywhere, thus $\psi(0) = \psi(a) = 0$. These are boundary conditions.

Note, however, that for finite barrier height and width, we will eventually see that it is possible for $\psi(x)$ to be nonzero in a classically forbidden [E < V(x)] region. "Tunneling." (There will be a problem on Problem Set #3 about this.)

So we solve for $\psi(x)$ in Region II, which looks exactly like the free particle because V(x) = 0 in Region II. Free particle solution are written in sin, cos form rather than $e^{\pm ikx}$ form, because application of boundary conditions is simpler. [This is an example of finding a general principle and then trying to find a way to violate it.]

$$\psi(x) = A \sin kx + B \cos kx$$
Apply boundary conditions
$$\psi(0) = 0 = 0 + B \rightarrow B = 0$$

$$\psi(a) = 0 = A \sin ka \Rightarrow ka = n\pi, \qquad k_n = \frac{n\pi}{a}$$

Normalize: $1 = \int_{-\infty}^{\infty} dx \psi * \psi = A^2 \int_0^a dx \sin^2 \frac{n\pi x}{a} \to A = \left(\frac{2}{a}\right)^{1/2}$ (Picture of normalization

integrand suggests that the value of the normalization integral = a/2)

Non-Lecture

Normalization integral for particle-in-a-box eigenfunctions

5.61 Fall 2013 Lecture #6 page 4

$$\psi_n(x) = A \sin\left(\frac{n\pi}{a}x\right)$$

Normalization (one particle in the box) requires $\int_{-\infty}^{\infty} dx \psi * \psi = 1$.

For V(x) = 0, $0 \le x \le a$ infinite wall box:

$$1 = \int_{-\infty}^{0} dx \psi * \psi + \int_{0}^{a} dx \psi * \psi + \int_{a}^{\infty} dx \psi * \psi = 0 + |A|^{2} \int_{0}^{a} dx \sin^{2} \frac{n\pi}{a} x + 0$$
$$1 = |A|^{2} \int_{0}^{a} dx \sin^{2} \frac{n\pi}{a} x$$

Definite integral

$$\int_0^\pi dy \sin^2 y = \pi/2$$

change variable: $y = \frac{n\pi}{a}x$

$$y = \frac{n\pi}{a}x$$

$$dy = \frac{n\pi}{a}dx \Rightarrow dx = \frac{a}{n\pi}dy$$

limits of integration:

$$x = 0 \Rightarrow y = 0$$

 $x = a \Rightarrow y = n\pi$

$$\int_0^a dx \sin^2 \frac{n\pi}{a} x = \int_0^{n\pi} \left(\frac{a}{n\pi}\right) dy \sin^2 y = \frac{a}{n\pi} n \left(\frac{\pi}{2}\right) = \frac{a}{2}$$

$$1 = |A|^{2} \frac{a}{2}, \quad \text{thus } A = \left(\frac{2}{a}\right)^{1/2}$$

$$\psi_{n}(x) = \left(\frac{2}{a}\right)^{1/2} \sin\left(\frac{n\pi}{a}x\right)$$
(A very good equation to remember!)

Find E_n . These are *all* of the allowed energy levels.

$$\widehat{H}\psi_{n} = E_{n}\psi_{n}$$

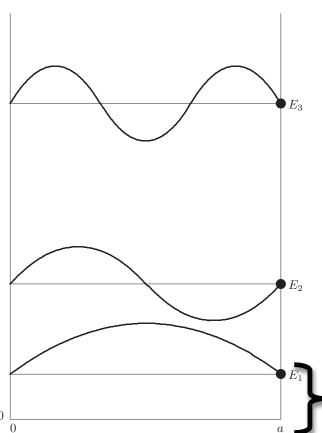
$$-\frac{\hbar^{2}}{2m}\frac{d^{2}}{dx^{2}}\psi_{n} = E_{n}\psi_{n}$$

$$+\frac{\hbar^{2}}{2m}\frac{(k_{n})^{2}}{\frac{n^{2}\pi^{2}}{a^{2}}} = E_{n} = \frac{h^{2}}{4\pi^{2}}\frac{1}{2m}\frac{n^{2}\pi^{2}}{a^{2}} = n^{2}\left(\frac{h^{2}}{8ma^{2}}\right)$$

n = 1, 2, ...

n = 0 would correspond to empty box

Energy levels are integer multiples of a common factor, $E_n = E_1 n^2$. (This will turn out to be of special significance when we look at solutions of the time-dependent Schrödinger equation (Lecture #13).



These are "stationary states". You are not allowed to ask, if the system is in ψ_3 , how does the particle get from one side of a node to the other.

How would you sample ψ_3 ? What would you measure? [Quantum Mechanics is full of what/how is "in principle" measurable, hence knowable.]

Could you measure ψ_3 ?

Could you measure $|\psi_3|^2$?

zero point E

All *bound* systems have their lowest energy level at an energy greater than the energy of the bottom of the well: "zero-point energy"

This zero-point energy is a manifestation of the uncertainty principle. Why? What is the momentum of a state with zero kinetic energy? Is this momentum perfectly specified? What does that require about position?

3. <u>Crude estimates of Δx , Δp </u> (we will make a more precise definition of uncertainty in the next lecture)

 $\Delta x = a$ for all *n* (the width of the well)

$$\Delta p_n = +\hbar k_n - \left(-\hbar k_n\right) = 2\hbar \left|k_n\right| = 2\hbar \left(\frac{n\pi}{a}\right)$$

$$= \frac{2}{2\pi} h \left(\frac{n\pi}{a}\right) = hn/a$$

The joint uncertainty is

$$\Delta x_n \Delta p_n = (a) \frac{hn}{a} = hn$$
 which increases linearly with n .

n = 0 would imply $\Delta p_n = 0$ and the uncertainty principle would then require $\Delta x_n = \infty$, which is impossible! This is an indirect reason for the existence of zero-point energy.

Since the uncertainty principle is

$$\Delta x \Delta p_x = h$$

it appears that the n = 1 state is a minimum uncertainty state. It will be generally true that the lowest energy state in a well is a minimum uncertainty state.

4. Use the 3-D box to illustrate a very convenient general result: *separation of variables*.

Whenever it is possible to write \widehat{H} in the form:

$$\widehat{H} = \widehat{h}_x + \widehat{h}_y + \widehat{h}_z$$
 (provided that the additive terms are mutually commuting)
$$\frac{\widehat{p}_x^2}{2m} + V_x(\widehat{x}) + \text{etc.}$$

it is possible to obtain ψ and E in separated form (which is exceptionally convenient!):

$$\psi(x,y,z) = \psi_x(x)\psi_y(y)\psi_z(z)$$

$$E = E_x + E_y + E_z.$$

Or, more generally, when

5.61 Fall 2013 Lecture #6 page 7

$$\widehat{H} = \sum_{i=1}^{n} \widehat{h}_i(q_i)$$

then

$$\psi = \prod_{i=1}^{n} \psi_{i}(q_{i})$$

$$E = \sum_{i=1}^{n} E_{i}$$

Consider the specific example of the 3-D box with edge lengths a, b, and c.

$$V(x,y,z) = 0 0 \le x \le a, 0 \le y \le b, 0 \le z \le c, \text{ otherwise } V = \infty.$$

This is a special case of $V(x,y,z) = V_x + V_y + V_z$.

$$T(\hat{p}_x, \hat{p}_y, \hat{p}_z) = \frac{-\hbar^2}{2m} \left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right]$$

$$\frac{\nabla^2 \text{ "Laplacian"}}{\nabla^2 \text{ "Laplacian"}}$$

$$\begin{split} \widehat{H}\left(x,y,z\right) &= \left[\frac{-\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V_x(\hat{x})\right] + \left[\frac{-\hbar^2}{2m}\frac{\partial^2}{\partial y^2} + V_y(\hat{y})\right] + \left[\frac{-\hbar^2}{2m}\frac{\partial^2}{\partial z^2} + V_z(\hat{z})\right] \\ &= \widehat{h}_x + \widehat{h}_y + \widehat{h}_z \end{split}$$

Schrödinger Equation

$$\begin{split} & \left[\hat{h}_x + \hat{h}_y + \hat{h}_z \right] \psi(x,y,z) = E \psi(x,y,z) \\ & \text{try } \psi(x,y,z) = \psi_x(x) \psi_y(y) \psi_z(z), \\ & \text{where } \hat{h}_i \text{ operates only on } \psi_i, \\ & \text{and } \hat{h}_i \psi_i = E_i \psi_i \text{ are the solutions of the 1-D problem.} \end{split}$$

$$\hat{h}_x \psi(x, y, z) = \psi_y \psi_z \hat{h}_x \psi_x = \psi_y \psi_z E_x \psi_x = E_x \psi_x \psi_y \psi_z = E_x \psi(x, y, z)$$

$$\uparrow \qquad \qquad \text{(does not operate on } y, z)$$

$$\hat{h}_y \psi = E_y \psi_x \psi_y \psi_z$$

$$\hat{h}_z \psi = E_z \psi_x \psi_y \psi_z$$

$$\hat{h}_z \psi + \hat{h}_z \psi + \hat{h}_z \psi = \widehat{H} \psi = (E_x + E_y + E_z) \psi.$$

So we have shown that, if \widehat{H} is separable into *additive* (commuting) terms, then ψ can be written as a product of *independent* factors, and E will be a sum of *separate* subsystem energies. Convenient!

So, for the a,b,c box

$$\psi_{n_x} = (2/a)^{1/2} \sin \frac{n_x \pi}{a} , \qquad E_{n_x} = n_x^2 \frac{h^2}{8ma^2}$$

$$\int_0^a dx \psi_{n_x}^2 = 1$$

$$\psi_{n_{y}} = (2/b)^{1/2} \sin \frac{n_{y}\pi}{b}, \text{ normalized, } E_{n_{y}} = n_{y}^{2} \frac{h^{2}}{8mb^{2}}$$

$$\psi_{n_{z}} = (2/c)^{1/2} \sin \frac{n_{z}\pi}{c}, \text{ normalized, } E_{n_{z}} = n_{z}^{2} \frac{h^{2}}{8mc^{2}}$$

$$E_{n_{x},n_{y},n_{z}} = \frac{h^{2}}{8m} \left[\frac{n_{x}^{2}}{a^{2}} + \frac{n_{y}^{2}}{b^{2}} + \frac{n_{z}^{2}}{c^{2}} \right]$$

$$\psi_{n_{x}n_{y}n_{z}} = \left(\frac{8}{abc} \right)^{1/2} \sin \frac{n_{x}\pi}{a} \sin \frac{n_{y}\pi}{b} \sin \frac{n_{z}\pi}{c}.$$

If each of the factors of ψ_{n_x,n_y,n_z} is normalized, it's easy to show that

$$\int dx dy dz \left| \psi_{n_x n_y n_z} \right|^2 = 1$$

because each of the integrations acts on only one separable factor.

This looks like a lot of algebra, but it really is an important, convenient, and frequently encountered simplification.

We use this separable form for Ψ and E all of the time, even when \widehat{H} is *not exactly* separable (for example, a box with slightly rounded corners).

 $\widehat{H}=\widehat{H}^{(0)}+\widehat{H}^{(1)}$ a separable Hamiltonian that we use to define a complete set of "basis functions" and "zero-order energies."

This is the basis for our intuition, names of things, and approximate energy level formulas.

 $\widehat{H}^{\scriptscriptstyle (1)}$ contains small inter-sub-system coupling terms that are dealt with by perturbation theory (Lectures #15, #16 and #19).

NEXT TIME we are going to look at some properties of a particle in a box. Some of these properties are based on simple insights, while others are based on actually evaluating the necessary integrals.

 $\langle x \rangle$ $\langle x^2 \rangle$ $\sigma_x^2 = \langle x^2 \rangle - \langle x \rangle^2$ "variance" $\langle p_x \rangle$ $\langle p_x^2 \rangle$ σ_{p_x} σ_{p_x} $\sigma_x \sigma_{p_x}$

FWHM

Gaussian $G(x-x_0,\sigma_x)$ [x_0 is "center", σ_x is "width"]

Lorentzian $L(x-x_0,\sigma_x)$

Minimum Uncertainty Wavepacket

MIT OpenCourseWare http://ocw.mit.edu

5.61 Physical Chemistry Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.