
5.61 Physical Chemistry  Lecture #35+ Page 1 
 

NUCLEAR MAGNETIC RESONANCE 
Just as IR spectroscopy is the simplest example of transitions being induced by light’s 
oscillating electric field, so NMR is the simplest example of transitions induced by the 
oscillating magnetic field.  Because the strength of matter-magnetic field interactions are 
typically two orders of magnitude smaller than the corresponding electric field interactions, 
NMR is a much more delicate probe of molecular structure and properties.  The NMR spin 
Hamiltonians and wavefunctions are particularly simple, and permit us to demonstrate several 
fundamental principles (about raising and lowering operators, energy levels, transition 
probabilities, etc.) with a minimal amount of algebra.  The principles and procedures are 
applicable to other areas of spectroscopy -- electronic, vibrational, rotational, etc. – but for 
these cases the algebra is more extensive. 
 
 
 

Nuclear Spins in a Static Magnetic Field 
For a single isolated spin in a static magnetic field, the contribution to the energy is: 

Ĥ0 = −m̂iB0 = −γ ÎiB0  
where γ is called the gyromagnetic ratio.  If we choose our z axis to point in the direction of 
the magnetic field then: 

H mˆ ˆ
0 0= − ˆ z zB = −γ I B0  

If we assume the nuclear spin is ½ (As it is for a proton) then we can easily work out the 
energy levels of this Hamiltonian: 
 E± = ± 1

2 γ �B 1
0 ≡ ± 2 �ω 0  

where ω0 = γB0 is called the nuclear Larmor frequency (rad/sec). Now, nuclei are never 
isolated in chemistry – they are always surrounded by electrons.  As we learned for the 
hydrogen atom, the electrons near the nucleus shield the outer electrons from the bare 
electric field produced by the nucleus.  Similarly, the electrons shield the nucleus from the 
bare electric field we apply in the laboratory.  More specifically, the electron circulation 
produces a field, B’ opposed to B0 and of magnitude equal to σ B0 where σ is a constant. Thus, 
the effective field, B, at the nucleus is  

B B= −(1 σ ) 0  bare nucleus with

Note that σ is different for each chemically 
nucleus electrons

B B (1-0 0 σ)

different nuclear spin – this is the famous chemical 
shift – and permits resolution of lines in NMR 
spectra corresponding to chemically different sites.  gy

The Hamiltonian is modified accordingly E
ne

r hω 0 hω 0 (1 − σ ) 

H mˆ ˆ
0 0= − ˆ z zB ( )1 1− σ γ= − I B0 ( )− σ  

Thus, instead of “seeing” a magnetic field of 
magnitude B0, a proton in a molecule will see a 
magnetic field of magnitude (1-σ)B0 and the Zero Field High Field 

associated  Hamiltonian and spin state energies will 
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become:  

E± = ± 1
2 γ �B0 ( )1− σ ≡ ± 1

2 �ω 0 ( )1− σ  
This is illustrated in the figure above. Note the sign of the Hamiltonian is chosen so that the 
α state  (spin parallel to B0) is lower in energy than the β state (spin antiparallel to B0).   
 
Now, in the simplest NMR experiment, we probe this system with an oscillating magnetic field 
perpendicular to the static field.  By convention, we take this field to be along the x axis: 

Ĥ1 ( )t = −m̂iB1 ( )t = −γ ÎiB Î1 ( )t = −γ xBx cos( )ωt  

We use Fermi’s Golden Rule to describe the spectrum of the spin in the oscillating field.  The 
selection rule is: 

Vfi ∝ ∫ φ ∫ I ̂ f * m ⋅ B1φ idτ = γBx φ f * xφ idτ  

Now, we recall that Î x can be written in terms of the raising and lowering operators for 
angular momentum: 
 I Iˆ ˆ

x ∝ +( )+ −Î  

So that: 
Vfi ∝ γBx ∫ φ f * ( )I ̂ + + I ̂ − φ idτ  

We immediately see that the integral is non-zero only if the initial and final spin states 
differ by ±1 quantum of angular momentum (i.e. Δ =M ±1 ) , because the operator must either 
raise or lower the eigenvalue of Î z .  Thus, there are two possible transitions: ↑→↓ and ↓→↑.  
Futher, the energy conservation rule tells us that these transitions will only occur when the 
photon energy matches the energy gap between the two states.  As a result, we can 
immediately draw the spectrum of a single shielded spin: 

 

Intensity 

Frequency (ω) (1−σ)ωo 

This is perhaps not all that shocking: there is only one transition here, and so we might have 
guessed that the spectrum would involve the frequency of that transition.  However, we note 
two generalizations of this result.  First, we note that if we had chosen to apply the 
oscillating field parallel to the static field, we would not have generated any transitions; we 
only changed the spin state because we could decompose the x-oscillating field into raising 
and lowering operators.  If the field was z-oscillating, then we would have had 
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Vfi ∝ γBz ∫ φ f * I ̂ zφ idτ  

which is only non-zero for the trivial ↑→↑ and ↓→↓ transitions. Second, we note that if the 
spin was bigger than ½ (e.g. a spin-3/2 nucleus) then our selection rule above would be 
precisely the same.  Thus, we would have allowed transitions − ↔3 1

2 2− , − ↔1 1
2 2+  and 

+ ↔1
2 2+ 3  and all of these transitions would occur at the same frequency.  Thus, spin-3/2 

transitions like − ↔3 1
2 2+  or − ↔3 3

2 2+  are strictly forbidden. 
 
Now, as noted above, depending on their environment, different protons will be shielded 
differently, resulting in a spectrum that will look qualitatively like: 

 

Intensity 

Frequency (ω) (1−σ3)ωo (1−σ4)ωo (1−σ2)ωo (1−σ1)ωo 

We note that the transition moment above is independent of the chemical environment: it 
does not depend on shielding or any other property of the molecule.  Thus, the area under an 
NMR peak is strictly proportional to the number of spins that have transitions at that 
frequency.  This stands in contrast to IR spectroscopy, where the intensity of each oscillator 
depended on the character of the oscillator, the initial state …. 
 
Two Spins – J Couplings 
Now, we are not usually interested in two isolated spins. For two uncoupled spins with 
different chemical shifts ( σ1≠ σ2 ) in an external field we obtain a Hamiltonian of the form: 

H Iˆ ˆ
0 1= −γ σz zB0 ( )1 1− γ ˆ

1 − I2 B0 ( − σ 2 ) 
Because this Hamiltonian is separable, we can immediately work out the energies: 

ω
E E

1 2
E ο [ ](1↓↓ = +↓ ↓ = + − σ σ

2 1 2) + (1 − )  

ω
E E ο

↓↑ = +
1 2

E [ ](1 σ σ1 2) (1 )↓ ↑ = + − − −  
2

ω
E E= + ο

↑↓ 1 2
E [ ](1 ) )↓ σ σ(1↑ = − − − −  

2 1 2

ω
E E

1 2
E ο [ ](1 1 2) (1 )↑↑ = +↑ ↑ = − − σ σ+ −  

2
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where we have assumed for simplicity that σ1< σ2 so that E E↓↑ > ↑↓ .  Now, the selection rule 
is the of the same form as for a single spin, but Ix decomposes into a sum of Ix for spin 1 and 
an  Ix for spin 2: 

Vfi ∝ γBx ∫ φ * I ̂ f xφ ∫ ( )I ̂ idτ = γBx φ f * 1x + I ̂ 2x φ idτ
 

∝ γBx ∫ φ f * ( )I ̂ + + I ̂ ˆ ˆ 
1 1+ + I 2+ + I 2− φ idτ

The remaining integral is only nonzero if Δ =M1 ±1 or Δ =M2 ±1, because the operators must 
raise or lower the spin state of either spin 1 or spin 2 (but not both).  If we wanted to change 
both spins, we would need an operator like I IÙ Ù

1 2+ − , which would allow us to raise 1 while also 
lowering 2.  Since we do not have any of these cross terms, we conclude only one or the other 
spin can flip in an allowed transition – any two-spin transitions are forbidden. 
 
Combining these results for two uncoupled spins, we obtain the picture at left. We note that 
the ↑↑↔↓↓ and ↓↑↔↑↓ transitions are forbidden, since they require flipping both spins 

simultaneously.  For the allowed transitions, we can easily work out 
E↓↓ 

ΔM2=±1 
ΔM1=±1 

E↓↑ 

E↑↓ 

ΔM1=±1 ΔM2=±1 

E↑↑ 

ΔM2=±1 

ΔM2=±1 ΔM1=±1 

ΔM1=±1 

E↓↑ 
E↑↓ 

E↓↓ 

E↑↑ 

the energies: 
ω ω

E E− = + ο ο[ ](1 − 1 2) + (1↓↓ ↑↓ σ σ− ) + [ ](1 − σ1 ) − (1 − σ 2 ) = ω − σ )  
2 2 ο (1

ω ω
E E− = [ ](1↓↑ ↑↑ + ο ο− σ σ1 2) − (1 − ) + [ ](1 − σ1 ) + (1 − σ 2 ) = ω (1 − σ  ο )

2 2
ω ω

E E− = + ο ο[ ](1 − σ σ1 2) + (1 − ) − [ ](1 − σ1 )↓↓ ↓↑ − (1 − σ ) = ο (1 − σ )
2 2 2 ω  

ω ωο οE E ) 1 ) (1 )↑↓ − = (1 ) (1 ) (1 (↑↑ − [ ]− σ σ− − + [ ]− σ + − σ = ω
2 21 2 1 2 ο − σ  

So we have only two transition energies, corresponding to each of the isolated transitions, 
just as predicted above: 

1

1

2

2

 

Intensity 

Frequency (ω) (1−σ1)ωo (1−σ2)ωo 

Where we note that there are actually two degenerate transitions contributing to each line. 
 

Intensity 

Frequency (ω) (1−σ1)ωo (1−σ2)ωo 
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We now permit the two spins to be coupled to one another in a simple way.  We include a J-

Jcoupling of the spins: ˆ
�2 I ˆ

1zI2z , where the factors of �  are included so that J has units of 

energy.  Thus, the Hamiltonian assumes the form 

( ) JĤ0 = −γ Î1zB0 1− σ − γ Î1 2 zB0 ( )1− σ 2 + ˆ
�2 I ˆ

1z I2z   

Now, we can work out the eigenvalues of this new Hamiltonian quite easily because we know 
the eigenvalues of IÙ1z

 and IÙ2z
.  For example, for the ↓↓ state: 

⎛ ⎞
Ĥ0φ↓↓ = −γ Î1zB0 ( ) J1− σ1 − γ Î B 1− σ +      ˆ ˆ    φ⎜ I ⎟⎝ 2 z 0 ( )2 I

�2 1z 2z ⎠ ↓↓

⎛ J ⎛ −�⎞ ⎛ −�⎞ ⎞
=       E1↓            +           E2↓          +

�2 φ  ⎜ ⎜ ⎟ ⎜ ⎟ ⎟⎝ ⎝ 2 ⎠ ⎝ 2 ⎠ ⎠ ↓↓

⎛ J ⎞
= E1↓ +E2↓ + φ⎜ ⎟⎝ 4 ⎠ ↓↓

Similar algebra for the other states gives: 
⎛ ⎛ ⎞ −ˆ J � ⎛ �⎞ ⎞ ⎛ J ⎞

H0φ↑↓ = E1↑ + E2↓ + 2 φ = E +E − φ  ⎜ ⎜ ⎟ ⎜ ⎟ ⎟ ⎜ ⎟⎝ � ⎝ 2⎠ ⎝ 2 ⎠ ⎠ ↑↓ ⎝ 1↑ 1↓ 4 ⎠ ↑↓

⎛ J ⎛ −�⎞ ⎛
Ĥ �⎞ ⎞ ⎛ J ⎞

0φ↓↑ = E1↓ + E2↑ + 2 φ↓↑ = E1↓ +E2↑ − φ↓↑  ⎜ ⎜ ⎟ ⎜ ⎟ ⎟ ⎜ ⎟⎝ � ⎝ 2 ⎠ ⎝ 2⎠ ⎠ ⎝ 4 ⎠

⎛ J ⎛ �⎞ ⎛ �⎞ ⎞ ⎛ ⎞
Ĥ J

0φ↑↑ = E1↑ + E2↑ + 2 φ↑↑ = E +⎜ ⎜ ⎟ ⎜ ⎟ ⎟⎝ � ⎝ 2⎠ ⎝ 2⎠ ⎠ 1↑ E⎜⎝ 1↓ + φ⎟4 ⎠ ↑↑  

Thus, in the presence of the coupling, our energy diagram changes: 
E↓↓ E↓↓ 

ΔΔM2=±1 ΔΔM2=±1 
ΔΔM1=±1 ΔΔM1=±1 
E↓↑ E↓↑ 

E↑↓ E↑↓ 

ΔΔM1=±1 ΔΔM2=±1 ΔΔM1=±1 ΔΔM2=±1 

E↑↑ E↑↑ 

Uncoupled J Coupling 
 

Where we have noted that states where the spins are parallel shift upward in energy and 
those where the spins are antiparallel shift down, and we have exaggerated the magnitude of 
the shift for visual effect. Note that the selection rules do not change, because the states 
have not changed – only the energies are different with the coupling on.  The energies of the 
allowed transitions are: 

ΔM2=±1 

ΔM2=±1 ΔM1=±1 

ΔM1=±1 

E↓↑ 
E↑↓ 

E↓↓ 

E↑↑ 

 

ΔM2=±1 

ΔM2=±1 ΔM1=±1 

ΔM1=±1 

E↓↑ 
E↑↓ 

E↓↓ 

E↑↑ 
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ω ω⎡ ⎤ ⎡ ⎤

E E− = + ο οJ J
(1 − 1 2)↓↓ ↑↓ σ σ+ −(1 ) + − −(1 − σ σ1 2) + −(1 ) − = ωο (1 − σ1) +  

2 4⎢ ⎥ 2 ⎢ 4 ⎥⎣ ⎦ ⎣ ⎦
ω ωο ο⎡ ⎤J J⎡ ⎤

E E− (1 1 2) (1 ) 1 21 )↑↑ = (1 ) (↓↑ + − σ σ− − − − − − σ σ− − + = ω  ⎢ ⎥ ο (1 − σ )
2 4 2 4 1 −⎢ ⎥⎣ ⎦ ⎣ ⎦
ω ω⎡ ⎤J J⎡ ⎤

E E↓↓ − = + ο ο(1 − σ σ1 2) + (1 − ) + − (1 − σ1) − (1 − σ 2 )↓↑ − = ωο (1 − σ )
2 4 2 4 2 +  ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

ω ω⎡ ⎤J J⎡ ⎤
E E− = ο ο− −(1 σ σ1 2) (1 ) − − )↑↓ ↑↑ + − − − (1 σ1 −  ⎢ ⎥ (1 − σ ) (1

2 4 2 + = ω 2 )
2 4 ο − σ −⎢ ⎥⎣ ⎦ ⎣ ⎦

Thus, whereas we had two doubly degenerate transitions in the absence of coupling, in the 
presence of coupling we have four distinct transitions: 

Intensity 

J J 

(1−σ2)ωo (1−σ1)ωo Frequency (ω) 
 

where here we have noted the physical fact that J is typically much smaller than the 
difference in chemical shielding σ between distinct protons.  Thus, we see that the splitting 
of NMR peaks is determined by the coupling between the nuclear spins.  This coupling is 
typically mediated via the electrons – nucleus 1 pushes on the electrons, which are delocalized 
and in turn push on nucleus 2.  While one can routinely compute these couplings via DFT or 
HF, it is much more common to use empirical rules to determine which protons will be coupled 
and how large we expect the coupling to be.  We should note that the magnitude of the J-
splitting is independent of the magnetic field strength.  Meanwhile, the Larmor frequency 
increases with increasing B0. Thus, in a strong enough magnet, the peaks with shielding near σ1 
will be very far from those with shielding σ2. 

 

 
Spin Dynamics and Pulsed NMR 
One of the extremely appealing aspects of NMR is we can exactly work out virtually any 
property we’re interested in knowing.  In particular, we can get a picture of the dynamics of 
the spin in an external magnetic field.  This gives us a qualitative picture of what we are doing 
when we take an NMR spectrum and also serves as the basis for modern pulsed NMR 
experiments.  Consider an arbitrary initial state written as a linear combination of the two 
spin states (here we use the designations α,β=↑,↓): 

ψ ( )t t= +c cα ( )ψ ψα ββ ( )t  

2

J

2

J

2

J

2

J

Intensity 

Frequency (ω) (1−σ1)ωo (1−σ2)ωo 

J J 
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where we have noted that the time dependence of the state comes through the time 
dependence of the coefficients.  We can write this in matrix mechanics: 

⎛� c
ψ ( )t = α ( )t ⎞

⎜ ⎟  
⎜ c⎝ β ( )t ⎟⎠

We can also write the time-dependent Schrödinger equation in Matrix mechanics: 
⎛ c� ⎞ ⎛ H H ⎞ c

 i�ψ� ( )t = α ( )t ⎛
αα αβ α ( )t ⎞

Ĥψ ( )t    ⇒    i�⎜ ⎟ = ⎜ ⎟ ⎜ ⎟  
⎜ c�β ( )t ⎟ ⎜ Hβα Hββ ⎟ ⎜⎝ ⎠ ⎝ ⎠ cβ ( )t ⎟⎝ ⎠

Now, for a spin in a static field, we know the Hamiltonian 
⎛ −�ω�
⎜

0
⎞

0 ⎟
 2Ĥ = −ω ( )− σ Îz ≡ −ω� ˆ

0 1 0Iz      ⇒     H = −ω� 0Iz = ⎜ ⎟  
⎜ �ω� 0 ⎟
⎜ 0
⎝ 2 ⎟⎠

Thus, the TDSE becomes: 
⎛ −�ω�

⎛ c�α ( )t ⎞ ⎜
0

⎞
0 ⎟ ⎛ c2 α ( )t ⎞

  i�⎜ ⎟ = ⎜ ⎟ ⎜ ⎟  
⎜ c�β ( )t ⎟ ⎜ −�ω� 0 ⎟ ⎜ cβ ( )t ⎟⎝ ⎠ 0 ⎝ ⎠⎜⎝ 2 ⎟⎠

Which reduces to two independent differential equations for the coefficients: 
−�ω� +�ω�

 i�c� ( ) = 0
α t c

2 α ( )t          i�c�β ( )t = 0 c
2 β ( )t  

These equations can easily be integrated to yield: 
i

 c ( )
+ ω� 0t −iω� 0t

α t = e 2 c 2
α ( )0          cβ ( )t = e cβ ( )0  

where we will assume for simplicity that the initial values, c cα β( )0 , ( )0  are real. Thus, the 
magnitude of each coefficient is constant with time; we only acquire a phase factor for each 
coefficient. However, these coefficients completely describe the time evolution of an 
arbitrary spin state in the static magnetic field. 
 
Now that we have solved for the coefficients of the time dependent wavefunction, let’s look 
at some interesting properties of the system.  First, let’s compute the z-component of the 
spin: 

⎛ ⎞
⎜ ⎟

 Îz ( )t = ( )
�

0 ⎛ c ( )t ⎞
cα ( )t * cβ ( ) 2 �

t ⎜ α ⎡ ( ) �⎟ ⎟ =
2 2

* ⎜ 2 2

( ) cα t c ⎡ c ⎤− ( )t ⎤ =  ⎥ ⎢ ( )0 − c ( )0 ⎥⎜ � ⎢⎟ ⎜ c t ⎣ β ⎦ 2 α β

0 − ⎝ β ⎟ 2 ⎣ ⎦⎠⎜⎝ 2 ⎟⎠
 Thus, the z-component of the spin does not change with time!  This is perhaps a bit 
surprising.  We continue to compute the x and y components: 
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⎛ � ⎞
⎜ 0

ˆ ( ) ( ) ⎟ ⎛ c
( ) ( ) 2 α ( )t ⎞ �

Ix t = cα t * cβ t * ⎜ ⎟ ⎜ ⎟ = ⎡ ( ) +⎣c β t ( )( ) α ( )t *c cβ t *cα ( )t ⎤
⎟ ⎜ c t ⎟⎝ β 2 ⎦⎜ � 0 ⎠  ⎜ ⎟⎝ 2 ⎠

�= c ( )0 c ( )0 ⎡e−iω� 0t + e+iω� 0t
α β ⎤ = �cα ( )0 cβ ( )0 cosω�⎣ ⎦2 0t

⎛ −

Î y ( )t = ( )
i� ⎞

⎜ 0 ⎟ ⎛ c ( )t ⎞
cα ( )t * cβ ( ) 2 α −i�

t * ⎜ ⎟ ⎜ ⎟ = ⎡
( ) ⎣cα ( )t *cβ ( )t − c

i� ⎟ ⎜ c t ⎟ 2 β ( )t *c
⎜

α ( )t ⎤⎦
⎜ 0 ⎝ β ⎠  ⎟⎝ 2 ⎠

−i�= c ( )0 c ( )0 ⎡e−iω� t − e+iω�
⎣

0 0t ⎤ = −⎦ �c ( )0 c ( )0 sinω� t
2 α β α β 0

Thus, the x and y components oscillate with time at the shielded Larmor frequency ω� 0 .  It is 
convenient to define a magnetization vector that contains these three expectation values: 

�
 M t( ) ⎛≡ Î x ( ) ⎞t Î y ( )t Îz ( )t  ⎝ ⎠
 
It is fairly easy to see that the magnetization is precessing about the magnetic field: the 
projection onto the magnetic field axis is constant, while the perpendicular motion is tracing 
out a circular path. This is precisely the behavior one would expect from a classical magnetic 
moment in a magnetic field.  In this case, the magnetic field would exert a torque on the 
magnetic moment according to: �

dM t( ) � �
 = M t( ) × γ Beff  

dt
where we note that the magnetic moment feels the shielded magnetic field Beff.  This gives us 
three differential equations for the components of the magnetization, called Bloch 
Equations: 

dMx ( )t
= −γ γ⎡ ⎤M t( ) Beff

⎣ ⎦y z Mz ( )t Beff eff
y = M ty z( ) B  

dt
dMy ( )t

= −γ γ⎡ ⎤M t( ) Beff

⎣ ⎦x z − M ( )t Beff
z x = − M tx z( ) Beff  

dt
dMz ( )t

= −γ ⎡ ⎤M t( ) Beff M ( )t Beff
x 0

dt x y y =  ⎣ ⎦
Where we have noted that only the z-component of the magnetic field is non-zero.  Further, 
it is easy to see by substitution that our quantum mechanical predictions for Î x ( )t  and 

Î y ( )t  satisfy the equations above for M tx ( ) and M ty ( ) , respectively (try it and see).  Thus, 
we find that the quantum evolution of the average spin exactly follows the classical 
equations of motion!  We find comfort in this conclusion, because it is usually much easier to 
think in terms of classical properties whenever possible, giving us a very nice semiclassical 
way of interpreting NMR. 
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This rather surprising result turns out to be true for a single spin evolving in an arbitrary 
time depenedent magnetic field Beff(t).  To prove this, we have to use Ehrenfest’s theorem, 
which states that for an arbitrary operator O, the time dependent average value of O 
satisfies  

d
Ô ( ) i

t = ⎡ ˆ ˆ
dt ⎣H,O⎤⎦ ( )t  

�
A general proof of this result is provided in McQuarrie.  For now, we will just assume it is 
correct and see what this tells us about the magnetization dynamics.  Applying Ehrenfest’s 
theorem to the three operators Î x, Î y, Îz  in an arbitrary magnetic field Beff(t) gives equations of 
motion that are exactly the same as the classical equations for M t

�

( ).  Thus, one can prove 
quite rigorously that the classical picture is exactly right for describing spin dynamics in a 
magnetic field. 
 
What does this gain us?  Well, with this result in hand it is relatively easy to derive the 
correct differential equations for our favorite time dependent magnetic field: �
 Beff ( )t = −Beff

z − Bx cos( )ωt  
This is the magnetic field we apply in an NMR experiment and being able to visualize the 
dynamics will help us understand how the experiment works.  It is relatively straightforward 
to work out the associated Bloch Equations for this magnetic field.  They are: 

dMx ( )t
= γ M t( ) eff

y zB  
dt

dMy ( )t
= −γ ω⎡ ⎤⎣ ⎦M tx z( ) Beff + Mz ( )t Bx cos ( t )  

dt
dMz ( )t

= −γ ωM ty x( ) B cos ( t ) 
dt

These equations can actually be solved analytically to obtain the magnetization as a function 
of time.  From these equations we obtain the picture below:  

  ω �ω 0  ω ω= 0  ω ω� 0  
 

Here, we are plotting the magnetization as a function of time for various choices of the 
frequency of the oscillating magnetic field component.  If our field oscillates too quickly 
(first case) then the magnetization just sees the average field and noting interesting 

ω ω0  
 

0ω ω=  0ω ω=  
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happens – we just get precession about the average field.  If the oscillating field is too 
slow, the magnetization oscillates around the instantaneous field and we get a sort of hula-
hoop motion of the magnetization.  However, if we hit the frequency just right (middle) we 
can get the magnetization to invert – to go from “up” to “down”.  Thus, we see that the 
absorption condition in NMR is associated with flipping the magnetization of the system. 
There is a terrific simulator of these types of dynamics online:  
 
http://www.drcmr.dk/BlochSimulator/ 

This site has an interface that solves the Bloch equations and shows the dynamics of a single 
spin as you adjust the permanent field, the perpendicular (RF) field …. It also allows you to 
perform some of the classic NMR and MRI experiments: you get to see how spins precess 
differently in a spatially varying magnetic field (as in MRI) and also how spins that precess at 
slightly different frequencies get out of phase with each other (dephasing) and can be 
brought back into phase (rephrasing) in what is called a spin echo.  Finally, you can also include 
phenomenological effects – like the fact that spins don’t precess forever, but instead relax 
toward the equilibrium “up” configuration (T1 relaxation) and the fact that inhomogeneity in 
the sample or the magnetic field can cause dephasing of the xy component of the 
magnetization (T2 relaxation).  Feel free to play with this simulator. It is a great way to gain 
intuition about how nuclear spins respond to magnetic fields. 
 
Now, we note that at resonance, with the field on continuously, the spin will actually flip from 
“up” to “down” and back to “up” and back to “down”… as a function of time.  It is this 
oscillation that shows up in our NMR spectrum.  However, it is possible to turn the oscillating 
field on and off as a function of time.  Thus, for example, if we kept the field on for exactly 
π/ω0 then the system would only have time to flip one time – all the up spins would be 
converted to down and vice versa.  Such a pulsed magnetic field is called an inversion pulse, 
for obvious reasons. Meanwhile, if we kept the field on for exactly π/2ω0 we could drive all 
the magnetization into the x-y plane.  This is called a π/2 pulse. Further, we note these pulses 
only work if we are on resonance with a particular proton’s Larmor frequency; from the above 
figure it is clear that if we are off resonance, we can’t get the spins to flip.  Thus, one can 
imagine fairly complex sequences of inversion pulses and π/2 pulses applied at various 
frequencies being used to isolate different couplings within a complicated molecule (like a 
protein).  Thus, it should not be surprising that cutting edge NMR experiments are all time-
resolved in order to extract the maximum information from the molecule. 
 
 

http://www.drcmr.dk/BlochSimulator/
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