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INTERMOLECULAR INTERACTIONS  
Consider the interaction between two stable molecules (e.g. water and 
ethanol) or equivalently between two noble atoms (e.g. helium and neon). Call 
the two species “A” and “B”, and suppose they are oriented as    

 
Now, according to our simple MO pictures, there will not be any chemical 
bonds between A and B; the MOs will be fairly localized either on A or on B 
and we should not have significant hybridization of the orbitals.  Thus, 
according to the MO picture, these molecules will not interact.  However, we 
know that they do interact.  If they did not, we would never be able to form 
liquids or solids, as it is the attraction between molecules that holds such 
things together.  Of course, our intuition also tells us that the interactions 
between molecules are much weaker than the forces that hold molecules 
together, and so we immediately guess that the intermolecular interactions 
can be treated as a perturbation. 

Toward this end, we write the Hamiltonian for the A-B system as: 
ˆ H = ˆ H A + ˆ H B + ˆ V AB

where ˆ H A  ( ˆ H B) describes the isolated interactions within molecule A (B) and 
ˆ V AB contains all the interaction terms between A and B. Now, ˆ V AB is a fairly 

complicated object: it contains all the interactions between electrons and/or 
nuclei on A and electrons and/or nuclei on B.  Rather than deal with the full 
ˆ V AB (which would be very hard) we will note that as long as A and B are far 

apart (i.e. as long as R is large) we can approximate ˆ V AB using a classical 
dipole-dipole interaction 

R2μ̂ ˆ μ μ ˆ A ⋅ B − 3( )μ ˆ A ⋅R ( )R ⋅ μ ˆ 
V AB ≈ B

4πε0R5     Eq. 1

Here, μμ̂  A  ( μμ̂  B)is an operator that measures the dipole moment on molecule A 
(B).  We won’t particularly care about the form of this operator in this 
lecture, but we will use it quite a bit later on.  For reference, 

μμ̂A ≡ e( )r̂ −RA − μμ Nuclear
A  

The first part measures the dipole moment of the electron charge 
distribution, while the second subtracts the dipole of the nuclear charges.   
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Now, Eq. 1 is still too complicated for us.  The dipole is a vector quantity – it 
has a magnitude and a direction.  As a result, the dipole-dipole interaction 
depends on the directions of the dipoles involved: 

 
While the orientation dependence of the μμ-μ interaction can be important in 
many situations, we will not be interested in this level of detail for now.  
Hence, we will assume that the molecular dipoles are oriented in their most 
favorable head-to-tail orientation (the first situation above) in which case 

ˆ ˆ μ ˆ 
V AB ≈ − Aμ B

2πε 3  
0R

where the non-boldface operator μ ˆ 
A( μ ˆ 

B) returns the magnitude of the 
dipole moment on A(B).  In practice, this will overestimate the true 
interactions, because sometimes the dipoles will be in less favorable 
orientations relative to one another, but it will suffice for qualitative 
purposes. 

Next, we split the Hamiltonian into a zeroth order part and a perturbation in 
the logical way:   

ˆ = ˆ + ˆ ˆ H 0 H A H B V = ˆ V AB

Because the zeroth order Hamiltonian is separable, we immediately 
recognize that the zeroth order eigenstates will factorize as products, and 
that the energies will add: 

ˆ H Ψ AΨ B = ( )ˆ + ˆ H H Ψ AΨ B = ( )E A + E B Ψ AΨ B
0 α β A B α β α β α β
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α and β are quantum numbers for A and B respectively. The reason we have 
two quantum numbers here instead of just one is exactly the same as why we 
had two quantum numbers (nx and ny) for the 2D harmonic oscillator: when we 
add degrees of freedom, we always introduce new quantum numbers. In the 
present case, when α=7 and β=3, we are looking at an excited state where 
molecule A is in its seventh excited state and B is in its third excited state. 
It isn’t enough to consider just excited states of A or B individually – one 
also has to allow for the possibility that both molecules might get excited at 
the same time.  That being said, in chemistry we are usually interested in the 
ground electronic state of the system.  For the A-B system, the ground 
state implies that both A and B are in their ground state, in which case  

Ψ( )0 = Ψ AΨ B  ( )0
0 0 0 E0 = E A

0 + E B
0 . 

Now, as discussed above, this zeroth order energy does not contain any 
interactions between A and B.  It is easy to see this in the equation because 
there are no terms that depend on A and B simultaneously.  Thus A doesn’t 
know that B exists, and vice versa.  As a result, at zeroth order the 
molecules will never stick to one another. 
 
To introduce interactions, we apply perturbation theory.  At first order, we 
have: 

(1) ∫ ∫ A* B* A B −1ˆ E0 = Ψ0 Ψ0 V ABΨ0 Ψ0 dτ Adτ B = Ψ A*Ψ B*μ ˆ μ ˆ A B

2πε R3 ∫ ∫ 0 0 A BΨ0 Ψ0 dτ Adτ B
0  

−1
= Ψ A*μ ˆ Ψ Adτ Ψ B*μ ˆ Ψ Bdτ

2πε ∫ 0 B
0R3 A 0 A ∫ 0 0 B

where on the second line we have grouped terms so that the integral clearly 
factorizes into a product of an integral over A and an integral over B.  These 
two integrals have physical meaning: 

Ψ A* ˆ 
  ∫ 0 μ AΨ A

0 dτ ˆ 
A ≡ μ A     (The ground state dipole of A) 

Ψ B*μ ˆ B ˆ 
  ∫ 0 BΨ0 dτ B ≡ μ B     (The ground state dipole of B) 

Thus, the first order energy takes on an intuitive form: 
− μ ˆ μ ˆ 

E (1) A
0 = B

2πε0R3 . 

This is just what we would expect.  As in classical physics, the average dipole 
on A interacts with the average dipole on B.  This interaction has a 
characteristic R-3 dependence, which will dominate at long range as all higher 
terms decay with R to some higher power (e.g R-6

 below).  At this point, we 
can make a physical connection with the abstract parameter λ used in 
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perturbation theory: here R-3

 plays the role of λ.  Thus, if we increase the 
separation between the fragments, the effective value of λ gets smaller and 
we expect perturbation theory to work perfectly for large enough R.  
Likewise, if we decrease R the strength of the perturbation gets stronger 
and we eventually expect perturbation theory to break down once the 
molecules get too close together. 
 
Nonetheless, we have arrived at what we sought: an expression for the 
interaction between two molecules.  This dipole-dipole interaction will 
typically dominate the intermolecular attraction at long range, except in one 
circumstance: if either A or B has a dipole moment of zero, the first order 
term vanishes identically and we are left once again with no intermolecular 
attraction.  Thus, we would still have no interaction between methane and 
water, because methane has no dipole.  To rectify this, we must go to second 
order in the expansion: 

∫
2 2

Ψ(0)* ˆ Ψ A*
m V ABΨ(0)

0 dτ ∫ ∫ α Ψ B* ˆ 
β V ABΨ A Bdτ Ad

( ) 0 Ψ0 τ B
E 2

0 = ∑ E (0) (0) =  
m E E A

≠
∑

( )0,0 0 − m ( )α ,β ≠ ( )0,0 0 + E B − B
0 E A

α − Eβ

Here we clarify that in this expression the single index m always specifies all 
of the quantum numbers for the system.  Thus, in this case m=(α,β), contains 
two quantum numbers.  The exemption m ≠ ( )0,0  that restricts the sum 
eliminates only one term: the case were both α=0 and β=0.  It does not 
remove terms where only α=0 or only β=0.  We can rationalize this by 
recalling that only the state whose eigenvalue we are computing (in this case 
the AB ground state) is eliminated from the sum.  All other terms are to be 
included.  Since the state with α=0 and β=1 is not the ground state (because 
molecule B is excited) it is allowed in the sum. 
 
As a result, we can break down the sum into three pieces.  If α=0 we get 

2 2

Ψ A*Ψ B* ˆ V Ψ AΨ Bdτ dτ Ψ A*Ψ B*μ ˆ μ ˆ Ψ AΨ Bdτ dτ
( ) 0 β AB 0 0 A B 1 0 β A B 0 0 A B

E 2 ∫
B,ind = ∫∑ + E B − E − E B = ∫ ∫

E A A 4π 2ε 2R6 ∑ E A + E B − E A
0 Eβ ≠ 0 0 0 0 β 0 0 0 − B

β ≠ 0 β

∫
2

Ψ A*μ ˆ Ψ A B
0 d *

1 0 A τ A Ψβ μ ˆ 
BΨ B

0 dτ B
= ∫

4π 2ε 2R6
0 E B

0 − E B
β
∑

≠ 0 β  
where on the second line we have again rearranged things so that it is clear 
we have a product of an A integral times a B integral.  The A integral does 
not depend on β, so we can move it outside the sum: 
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2
2

( )2 μ 
2

ˆ Ψ B*μ ˆ 2 → β
0 ˆ ˆ 0BΨ Bdτ B

E
A ∫ β μ A μ B

B,ind =   Eq. 
4π 2 2 

ε 2 6 ∑ =
0R 0 E B

0 − E B 4π 2ε 2R6 E B B
β ≠ β 0 β

∑
≠ 0 0 − Eβ

where we have defined the transition dipole by 
μ ˆ 0→ β = Ψ B* ˆ 

B ∫ β μ BΨ B
0 dτ B . 

The interpretaion of this integral is a bit challenging at first.  There are a 
number of ways to understand it: 1) If we put B in an electric field, μ ˆ 0→ β

B  
reflects the importance of the state β in the new ground state of the 
system 2) In matrix language, μ ˆ 0→ β

B  is the off-diagonal coupling between 
state 0 and state β produced by the dipole operator 3) In spectroscopy, we 
will find that μ ˆ 0→ β

B  relates to the intensity of the optical transition between 
0 and β.  However you slice it, the important point is that μ ˆ 0→ β

B  need not be 
zero even if μ ˆ 

B  vanishes. Thus the second order term we have labeled 
( )E 2
B,ind will typically give a non-zero contribution as long as A has a dipole 

moment.  The contribution will be attractive, because the numerator in Eq. 2 
is positive and the denominator is negative.  Further, ( )E 2

B,ind has a 
characteristic R-6 dependence on the A-B separation.  If both molecules 
have a dipole, this contribution will be totally swamped by the dipole-dipole 
contribution (which only decays as R-3), and so ( )E 2

B,ind only really becomes 
important in cases where B has no dipole. 
 
Physically, we can interpret ( )E 2

B,ind  as an induction effect (hence the subscript 
“ind”).  If molecule A has a permanent dipole, this dipole exerts a field on B 
and induces a dipole there because the electrons on B can polarize in the 
presence of the field.  If we instead have the scenario where B has a 
permanent dipole but A does not, we still get a contribution from the β=0 
terms in the sum where the roles of A and B are interchanged 

2

μ 
2

ˆ ∫ Ψ A*μ ˆ Ψ A
α A 0 dτ →

A ˆ 
B μ 

2 2
ˆ 0

 ( )E 2 B μ α
A

A,ind =
π 2ε 2 ∑ A − E A =

4 R6 E 4π 2ε 2 6 A A  
0 α ≠ 0 0 α 0R E0 − Eα

∑
≠ 0 α

This term describes induction where the dipole moment on B induces a dipole 
on A. 
 
However, in the case where neither A nor B has a dipole, we appear to still 
be out of luck.  How do non-polar molecules stick to one another? The final 
piece to the puzzle is provided by the terms in the second order energy 
where neither α nor β is zero.  In this case 
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∫ ∫
2

* B A B

( ) 1 Ψ A *μ ˆ μ ˆ α Ψ
∑ β A BΨ0 Ψ0 dτ Adτ B

E 2
disp =

4π 2ε 2
0R6 A B A B  

α , 1 E0 + E0 Eα − Eβ = − β

1 ∫
2

Ψ A*
α μ ˆ 

AΨ A
0 dτ A ∫ Ψ B* ˆ β μ Ψ B

B 0 dτ B
=

4π 2ε 2R6
0 α

∑ A B A B  
, 1 E0 + E0 − Eα − Eβ = β

Using our definitions of transition dipoles, this reduces to 
0→α 2 0→ β 2

( )2 1 μ μ
Edisp = A B .   Eq. 3 

4π 2ε 2
0R6 ∑ E A

, 1 0 + E B A E B
α β = 0 − Eα − β

In general the summand will be a small number, because the denominator 
involves an energy difference between electronic states and we have seen 
that electronic energy differences are big numbers.  However, it need not 
be zero even if neither molecule has a permanent dipole.  The only thing 
involved are the transition dipoles, and we have seen that in general these 
need not be zero. We have thus discovered a universal force between 
molecules.  It is attractive, because the numerator in Eq. 3 is positive, while 
the denominator is negative.  Further, it has no classical counterpart – it only 
exists because of quantum interactions. This attractive force was 
discovered by Frtiz London and is called the London dispersion force in his 
honor.  In physics, the analogous interaction between two uncharged plates 
is called the Casimir force.  In either situation, one typically rationalizes the 
interaction using the following quantum logic: “While neither molecule has a 
dipole on average, the two molecules can still cooperate so that half the 
time molecule A will have a + dipole while B will have a – dipole (creating an 
attractive interaction) while the other half the time A is – and B is + (also 
attractive.  On average, the dipoles are still zero, but there is still a net 
interaction.” 
 
The dispersion interaction has a characteristic R-6 dependence on distance, 
and the coefficient is typically much smaller than that for dipole-induced 
dipole forces.  Thus, it is most important in systems with no dipole moment.  
An important example of this is graphite, where the graphene sheets are 
held together solely by the dispersion interaction between the layers. 
 
Putting everything together, perturbation theory gives us a physical 
hierarchy of intermolecular forces and also justifies why all kinds of 
molecules tend to stick together. 
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