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MODERN ELECTRONIC STRUCTURE THEORY:  
Electron Correlation 

In the previous lecture, we covered all the ingredients necessary to choose a 
good atomic orbital basis set.  In the present lecture, we will discuss the 
other half of accurate electronic structure calculations: how we compute the 
energy. For simple MO theory, we used the non-interacting (NI) electron 
model for the energy: 

N N

 ENI = ∑ Eμ = ψ μ ( )1 Ĥ0
μ = μ

∫ 1
1

∑ ψ μ ( )dτ  
=1

Where, on the right hand side we have noted that we can write the NI 
energy as a sum of integrals involving the orbitals.  We already know from 
looking at atoms that this isn’t going to be good enough to get us really 
accurate answers; the electron-electron interaction is just too important.  
In real calculations, one must choose a method for computing the energy 
from among several choices, and the accuracy of each method basically boils 
down to how accurately it treats electron correlation. 
 

Self Consistent Fields 
The Hartree Fock (HF) Approximation 
The Hartree-Fock method uses the IPM energy expression we’ve already 
encountered: 

∑
N

∑
N

EIPM = E �
μ + Jμν − K� μν

μ =1 μ <ν  
Eμ = ∫ψ ( )1 Ĥμ 0ψ μ ( )1 dτ

1J� ≡ ∫∫ψ *
μ ( )1ψ *

ν ( )2 ψ μ ( )1ψ ν ( )2 dr
μν r1− 1 dr2 dσ1 dσ

r 2  
2  

K� ψ *
μ ( ) 1≡ ∫∫ 1ψ * ( )2

μν ν ψ
r −r μ ( )2 ψ ν ( )1 dr1 dr2 dσ1 dσ 2
1 2

Since the energy contains the average repulsion, we expect our results will 
be more accurate.  However, there is an ambiguity in this expression.  The 
IPM energy above is correct for a determinant constructed out of any set of 
orbitals { }ψ μ  and the energy will be different depending on the orbitals we 

choose.  For example, we could have chosen a different set of orbitals, { }ψ 'μ
, and gotten a different energy:   
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N

E 'NI = ∑ E 'i ∑
N

+ J� ' �
μν − K 'μν  

μ =1 μν

How do we choose the best set of orbitals then? Hartree-Fock uses the 
variational principle to determine the optimal orbitals. That is, in HF we find 
the set of orbitals that minimize the independent particle energy.  These 
orbitals will be different from the non-interacting orbitals because they will 
take into account the average electron-electron repulsion terms in the 
Hamiltonian.  Thus, effects like shielding that we have discussed 
qualitatively will be incorporated into the shapes of the orbitals.  This will 
tend to lead to slightly more spread out orbitals and will also occasionally 
change the ordering of different orbitals (e.g. σ might shift below π once 
interactions are included). 

 
Now, the molecular orbitals (and hence the energy) are determined by their 
coefficients. Finding the best orbitals is thus equivalent to finding the best 
coefficients.  Mathematically, then, we want to find the coefficients that 
make the derivative of the IPM energy zero: 

∂EIPM ∂ N

∂cμ =
∂cμ ∑

N

E �
μ + ∑ Jμν − K� μν = 0  

μ =1 μν

After some algebra, this condition can be re-written to look like an 
eigenvalue problem: 

F c[ ]cμ μ= Eμ S c      Eq. 1 

The matrix F is called the Fock matrix and it depends on the MO 
coefficients:  
Fij ≡ ∫ φ AO ˆ

i H0φ AO
j dτ

N

+ ∑ ∫ φ AO
i ( ) ∫

1
1 ( ) 1ψ 2 φ AO

μ r j ( )1 ψ μ ( )2 dτ1 dτ 2 − φ AO AO
i ( )1 ψ μ ( )2 φ j ( )2 ψ μ ( )1 dτ1 dτ 2

μ =1 12 r12

 
The first term is just the independent particle Hamiltonian that we’ve been 
dealing with in cruder forms of MO theory.  The second and third terms are 
new contributions that arise from the average electron-electron repulsion 
present in our system.  These terms reflect the fact that, on average, each 
electron will see not only the nuclear attraction (first term) but also the 
average Coulomb (second) and Exchange (third) interactions with all the 
remaining electrons.  For this reason, HF is also known as “mean field” 
theory, because it includes both the interaction of each electron with the 
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nuclei (through ∫ φ AO ˆ
i H0φ AO th

j dτ ) and the average, or mean, repulsion of the μ  

electron with all the other electrons (via the Coulomb and exchange terms).   
Just as was the case for crude MO theory, the eigenvalue, Eμ, of the μth 
orbital can be interpreted as an ionization potential if the orbital is 
occupied, or as an electron affinity if the orbital is not occupied.  The latter 
result is known as Koopmans’ theorem and it is a rather remarkable feature 
of HF, given that it includes the average repulsion between electrons and 
the IP and EA refer to systems with different numbers of electrons. 

Note the dependence of the Coulomb and exchange terms on the molecular 
orbitals ψμ. If F did not depend on the MO coefficients, we could solve Eq.2 
by just finding the eigenvalues and eigenvectors of F.  However, this would 
be inconsistent because we would be using one set of coefficients (c) to 
define F and we would get a different set of coefficients (c’) as the 
eigenvectors of F.  We need MO coefficients that are self-consistent with 
the mean field they generate. Thus, in order to satisfy the Hartree-Fock 
equations one typically resorts to an iterative procedure, where steps 2-5 of 
our MO procedure are performed repeatedly: 

st 
n 

 

5) Compute E,  

1’) Guess an IPM Hamiltonian Heff 

1) Choose an AO Basis

2) Build Heff, S matrices 

3) Solve the Eigenvalue Problem 

4) Occupy Lowest Orbitals 

 

Heff=F[c] 

 
No Yes 

Here, HF makes use of the fact that defining an IPM Hamiltonian, Heff, 
completely determines the molecular orbital coefficients, c.  Thus, the mo
convenient way to change the orbitals is actually to change the Hamiltonia
that generates the orbitals, and the form of the Hartree Fock Equations 
(Eq. 2) suggest a natural way to improve the effective Hamiltonian.  The 
calculation converges when we find the molecular orbitals that give us the

Done
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dElowest possible energy, because then = 0 .  At this point, the Hamiltonian 
dc

will be self-consistent: the orbital coefficients we used to build F and define 
Heff will be the same as the ones we get from the eigenvectors of Heff.  For 
this reason, these iterations are called self-consistent field (SCF) 
iterations. Physically, these iterations locate a set of MOs that are 
eigenstates of the averaged electrostatic repulsion that they, themselves, 
generate. 
 
One can go on to define atomic charges, bond orders and other qualitative 
metrics within the HF approximation.  Before talking about the practical 
accuracy of HF, though, we first discuss a closely related method. 

 
Density Functional Theory (DFT) 
Here, we still use a Slater determinant to describe the electrons.  Hence, 
the things we want to optimize are still the MO coefficients cμ.  However, we 
use a different prescription for the energy – one that is entirely based on 
the electron density.  For a single determinant, the electron density, ρ(r) is 
just the probability of finding an electron at the point r.  In terms of the 
occupied orbitals, the electron density for a Slater Determinant is: 

( ) ∑
N

ρ ψ= μ ( ) 2
r r      Eq. 2 

μ =1

This has a nice interpretation: ψ μ ( ) 2
r  is the probability of finding an 

electron in orbital μ at a point r.  So the formula above tells us that for a 
determinant the probability of finding an electron at a point r is just the 
sum of the probabilities of finding it in one of the orbitals at that point. 
 
There is a deep theorem (the Hohenberg-Kohn Theorem) that states: 
 

There exists a functional Ev[ρ] such that, given the ground state 
density, ρ0, Ev[ρ0]=E0 where E0 is the exact ground state energy.  
Further, for any density, ρ’, that is not the ground state density, 
Ev[ρ’]>E0. 
 

This result is rather remarkable.  While solving the Schrödinger Equation 
required a very complicated 3N dimensional wave function Ψel(r1, r2,…rN), this 
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theorem tells us we only need to know the density - which is a 3D function! – 
and we can get the exact ground state energy.  Further, if we don’t know the 
density, the second part of this theorem gives us a simple way to find it: 
just look for the density that minimizes the functional Ev. 
 
The unfortunate point is that we don’t know the form of the functional Ev.  
We can prove it exists, but we can’t construct it.  However, from a 
pragmatic point of view, we do have very good approximations to Ev, and the 
basic idea is to choose an approximate (but perhaps very, very good) form 
for Ev and then minimize the energy as a function of the density.  That is, we 

dElook for the point where v = 0 .  Based on Eq. 2 above, we see that ρ just 
dρ

depends on the MOs and hence on the MO coefficients, so once again we are 
dElooking for the set of MO coefficients such that v = 0 . Given the 
dc

similarity between DFT and HF, it is not surprising that DFT is also solved 
by self consistent field iterations.  In fact, in a standard electronic 
structure code, DFT and HF are performed in exactly the same manner (see 
flow chart above).  The only change is the way one computes the energy and 
dE dE.  Note that the condition v = 0  can also be cast as a generalized 
dc dc

eigenvalue-like equation: 
H c[ ] μ μ

KS c = Eμ S c  
The effective Hamiltonian appearing in this equation is usually called the 
Kohn-Sham Hamiltonian. 
 
Now, as alluded to above, there exist good approximations (note the plural) 
to Ev. Just as was the case with approximate AO basis sets, these 
approximate energy expressions have strange abbreviations.  We won’t go 
into the fine differences between different DFT energy expressions here.  
I’ll simply note that roughly, the quality of the different functionals is 
expected to follow: 

LSDA < PBE ≈ BLYP < PBE0 ≈ B3LYP 
Thus, LSDA is typically the worst DFT approximation and PBE0 and B3LYP 
are typically among the best.  I should mention that this is just a rule of 
thumb; unlike the case for basis sets where we were approaching a well-
defined limit, here we are trying various uncontrolled approximations to an 
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unknown functional.  Experience shows us that B3LYP is usually the best, but 
this need not always be the case. 
How big a molecule can I treat with SCF theory?  
Now we come to the practical aspect of SCF theory: What is it good for?  
Given the speed of modern computers, can I do an SCF calculation on (fill in 
your favorite molecule)?  How accurate will my answers be?  Because SCF 
has been around for 75 years, all of these empirical questions have been 
answered by computational experiments. Here, we will merely summarize 
some of the most important facts 
 
The question of what molecules are “too big” for HF is, in some sense, a 
poorly defined question.  Clearly, bigger molecules will mean longer 
calculations, but if I am very patient or have a very fast computer, what is 
“too big” for you might be just right for me.  Further, since computers are 
getting exponentially faster due to Moore’s law, any limits we place on HF 
now will seem terribly outdated in 10 years. 
 
Thus, rather than state a rule for the maximum system size we can treat in 
SCF calculations, it is better to learn how to calculate a ballpark figure for 
how long a calculation will take.  From that we can back out the current limits 
on molecule size, but we can also extrapolate what size molecules will be 
available in the future. 
 
Toward this end, we note that in order to do a HF calculation, we must 
compute the eigenvalues of the Fock matrix.  As a first step, we will make 
the gross approximation that this is the only step of the calculation that 
requires significant computational effort.  In practice, there are other steps 
that take time (computing integrals, for example) but to get a rough 
estimate, we can neglect these parts. The Fock matrix has dimension (# of 
AOs)x(# of AOs).  Assume every atom is a first row atom (BCNOF) and that 
we are working in a DZP basis set. Then each atom will need a basis of size 
(3s2p1d), for a total of 14 orbitals per atom.  For simplicity, we will round 
this down to 10, since multiplying by 14 is inconvenient.  Thus, the Fock 
Matrix will have dimension ~(10A)x(10A). This is somewhat of an 
underestimate, but it will suffice for the time being. 
 
Now, there are two ways the calculation can become too big for the 
computer.  First, it could run out of memory (RAM).  Second, we could run 
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out of time.  In the first case, the primary challenge is finding enough 
memory for the (10A)x(10A)=100A2 numbers that comprise the Fock matrix.  
As a rule of thumb, each number takes up 8 bytes so that the Fock matrix 
requires 800A2 bytes of storage.  A typical computer these days has on the 
order of 2 Gigabytes (2x109 bytes) of storage, which will get maxed out if 
800A2=2x109, which happens when A=2500 or so.  So, based on storage, we 
conclude HF calculations are possible on systems up to a couple thousand 
atoms in size.  Looking at the time the calculation takes, the key step is 
finding the eigenvectors of the Fock matrix.  As a rule of thumb, finding the 
eigenvectors of an N-by-N matrix takes about 5N3 operations (add, 
subtract, multiply, divide).  Thus, finding the eigenvectors of F will require 
about 5x(10A)3=5000A3 operations.  A modern CPU can do about 3 billion 
operations in a second (the clock speed on processors is on the order of 3 
GHz).  Thus, in an hour a good CPU can do (3600 s/hr)x(3x109 ops/s)≈1x1013 
operations.  Thus, the calculation will take an hour when 5000A3≈1x1013, 
which again occurs when A≈1200.  This estimate is a little bit less accurate 
than the storage estimate because we’ve neglected all the other steps in the 
SCF procedure, and we’ve also ignored the fact that in the SCF iterations 
will require us to find the eigenvectors of F many, many times.  Thus, a 1200 
atom calculation will actually take quite a bit more than an hour, but that’s 
OK because in practice even waiting 1-2 days for an answer isn’t so bad, 
because the computer can work while we’re off doing something else.   
 
In any case, whether we look at time or storage, we arrive at the same 
conclusion: SCF calculations can be run on molecules with up to a couple 
thousand atoms.  This opens up a huge variety of chemical systems to ab 
initio computation and has led to MO theory calculations becoming par for 
the course in many research publications.  The limiting factor in expanding 
the size of systems one can study with HF or DFT is that the cost grows 
non-linearly with the size of the system.  If your present computer can 
handle A atoms, then it has something like A2 memory and A3 CPU speed. In 
order to handle 2A atoms, you’ll need (2A)2=4A2 memory and (2A)3=8A3 CPU.  
Thus, the computational demands grow faster than the system size – if you 
double the system size, you need four times the memory and 8 times the 
CPU power.  This makes the calculation increasingly difficult for large 
systems and one inevitably hits a wall beyond which the calculation is just 
too difficult.  To circumvent this, many groups are investing time in 
developing linear scaling algorithms for MO simulations that hinge on two 
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points: First, for very large systems, many of the terms in the RH equations 
are very, very small (e.g. the interaction between two very distant atoms).  
Avoiding computing these irrelevant terms can save an immense amount of 
time and storage.  Second, by reformulating the SCF iterations, one can 
avoid computationally intensive steps like finding eigenvectors in favor of 
many less expensive operations (like matrix-vector multiplication).  At the 
moment, these algorithms are still work in progress, but they will be 
required if one wants to be able to simulate truly large molecules and 
aggregates in the 100 kDa range. 
 
In any case, HF and DFT are both limited by the same computational 
bottlenecks and thus, in practice, the two methods have very similar 
computational cost.  The same can not be said about the methods’ accuracy, 
however, as we now discuss. 
 
Accuracy of SCF Calculations 
Even though Hartree Fock and DFT are much more accurate than qualitative 
MO theory, they are still an approximation. The accuracy varies depending 
on the property one is interested in, and the reliability of HF/DFT for 
various predictions has been extensively tested empirically.  We now 
summarize a few key rules of thumb that come out of those computer 
experiments. Note that, as discussed above, the quality of DFT results 
depends on the functional used.  The figures given below are characteristic 
of the B3LYP functional (one of the better forms available).  In the future, 
as new and better functionals are developed, these error bars may improve. 
 
Ionization Potentials and Electron Affinities: Just as for qualitative MO 
theory, we can use SCF calculations to compute the IP and EA of a molecule, 
M.  There are two ways we can do this, which will give somewhat different 
answers.  The first is to use Koopman’s theorem.  Here we do just one 
calculation on the neutral molecule and then estimate the IP (EA) from εHOMO 
(εLUMO).  In the second route, we perform two separate calculations on the 
neutral and cation (or anion) to compute the IP (or EA) directly from 
IP=E[M+]-E[M] (or EA=E[M]-E[M-]).  In practice the first route is somewhat 
faster, while the second is somewhat more accurate.  Taking the more 
accurate route, HF predicts IPs and EAs to within about 0.5 eV.  This isn’t 
perfect, but is close enough to sometimes be a useful guide.  DFT on the 
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other hand predicts IPs and EAs to within about 0.2 eV.  Thus, DFT is not 
perfect, either, but a clear improvement. 
 
Bond Lengths: Given the positions of the nuclei, any electronic structure 
technique gives us a prescription for the energy. Thus, we have an energy 
that depends on the positions of all the atoms – E(R1,R2,R3,…RM). This energy  
is what have called the  potential energy surface (PES), and it contains a 
wealth of information, about stable conformations of the molecule – local 
minima on the PES.  To find these, we are interested in points where
∇E ( )Req

I = 0 .  It turns out that HF is fairly reliable for predicting these 
stable structures – the resulting bond lengths are typically about 1% too 
short. DFT is even a little more accurate still, giving bond lengths correct to 
within about 1 pm (0.01 Å) As SCF calculations are often a very useful guide 
to structural information. 
 
Vibrational Frequencies One can also obtain the energies of vibrational 
transitions from the PES.  The most accurate way to do this would be to 
solve the Schrödinger equation for the nuclei moving on the PES 

( )T̂ + EPES ( )R I Ψnuc ( )R = Eν Ψnuc ( )R  
where ˆ T  is the nuclear kinetic energy operator.  Often, a much simpler 
approximation suffices.  Around one of the stable minima, one can 
approximate the PES using a power series expansion: 

E ( )R ≈ E ( )Req + 1 ( )eq
PES I PES I 2 R I − R I ⋅ EPES′′ ( )Req

I ⋅ ( )R I − Req
I  

Thus we see that the energy looks like a Harmonic oscillator with a force 
constant EPES′′ ( )Req

I .  Thus, if one computes the second derivatives of the PES 
around the minimum, one can directly predict the harmonic vibrational 
frequencies of the molecule.  HF does a passable job of predicting these, 
typically overestimating the correct values by 10%.  DFT is, once again, quite 
a bit better – it underestimates by about 3% on average. 
 
Reaction Barrier Heights: In predicting the rates of chemical reactions, one 
is very interested in the energetic barrier between reactants and products.  
One can approximate this in a calculation by looking for saddle points on the 
PES.  Here, one still looks for configurations where ∇EPES = 0 , but at least 
one of the second derivatives is negative, indicating that the energy is 
maximized  (rather than minimized) along at least one coordinate.  Finding 
saddle points is much more difficult than finding minima, because they are 
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inherently unstable.  However, once these points have been found, one can 
predict the barrier height by computing energy difference between the 
minimum and the saddle point.  HF is not terribly good at predicting these 
barrier heights, typically overestimating them by 30-50%.  Unfortunately, 
current density functionals are not very good at this, either, typically 
underestimating barrier heights by ~25%.  The challenge of improving 
barrier heights in DFT (without making other properties worse!) is an active 
area of research. 
 
Binding Energies One of the most important properties we can predict is the 
binding energy of a complex. We can obtain the binding energy of AX by 
doing three separate calculations (on AX, A and X).  The binding energy is 
then ΔE=E(AX)-E(A)-E(X).  Unfortunately, HF is quite bad at predicting 
binding energies in this fashion, underestimating them by 50% in practice.  
DFT on the other hand is very successful at predicting binding energies, with 
a typical error of about 0.1 eV 
 
Putting all this data together, we can make a table of expected accuracy for 
HF and DFT: 

Property HF Accuracy DFT Accuracy 
IPs and EAs ±0.5 eV ±0.2 eV 
Bond Lengths -1% ±1 pm 
Vibrational  
Frequencies 

+10% -3% 

Barrier 
Heights +30-50% -25% 

Bond Energies -50% ±0.1 eV 
Because DFT is essentially universally more accurate than HF but comes at 
the same computational cost, DFT calculations have taken over the quatum 
chemistry literature. 

 
 

Correlated Wave Function Approximations 
While DFT gives us terrific bang for our buck, the one thing it does not 
provide is a convergent hierarchy for doing calculations.  We have some 
empirical rules of thumb that one functional should be better than another, 
but no guarantees.  And further, if the best functional (e.g. B3LYP) gives the 
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wrong answer, we have no avenue by which we can improve it.  To obtain 
something that is more controlled, we use methods that are commonly 
referred to as correlated wave function methods. Here, the idea is to 
employ wave functions that are more flexible than a Slater determinant.  
This can be done by adding up various combinations of Slater determinants, 
by adding terms that explicitly correlate pairs of electrons (e.g. functions 
that depend on r1 and r2 simultaneously) and a variety of other creative 
techniques.  These approaches are all aimed at incorporating the correlation 
between electrons – i.e. the fact that electrons tend to spend more time far 
apart from one another as opposed to close together.  This correlation 
reduces the average repulsion employed in HF and brings us closer to the 
true ground state energy.  
 
First, we must properly frame the task.  The best ground state wave 
function we have obtained so far comes from HF (in technical terms, DFT 
only gives us a good density, not a good wave function).  Of course, the HF 
wave function is not the true ground state wave function and the HF energy 
is not the true ground state energy 

Ψ HF ≠ Ψexact                   EHF ≠ Eexact  
In particular, we know from the variational principle that the HF energy is 
above the ground state, so we define the correlation energy as 

Ecorr = Eexact − EHF . 
This energy captures the energy difference between our HF estimate and 
the correct ground state energy.  It is negative (stabilizing) by definition 
and physically arises from the fact that electrons are not independent (as in 
HF) but move in a correlated fashion so that they avoid one another and thus 
minimize the electron-electron repulsion.  As a rule of thumb, EHF is about 
99% of the total energy, so that Ecorr is only about 1% of the total energy.  
However, this 1% determines a whole range of chemical properties (recall 
how bad HF is for predicting, say, bond energies) and so it is crucial that we 
describe it accurately. 
   
Hence, our goal is to derive the wave function corrections necessary to turn 
EHF into Ecorr – or at least get a better approximation. There are generally two 
routes to this: the first treats the missing correlation as a perturbation, the 
second seeks to directly expand the wave function and use the tools of 
matrix mechanics. 
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Perturbation Theory 
Because the correlation energy is usually small, perhaps the first impulse is 
to treat it as a perturbation.  To this end, we look at the many electron 
Hamiltonian 

Ĥel = Kinetic Energy + Electron / Nuclear Attraction + Electron Electron Repulsion  
and immediately recognize that we can split this into a reference (the first 
two terms) and a perturbation (the last term).  The reference can then be 
treated using MO theory and we include the effects of the electron-
electron interaction as a perturbation to first, second … order in the hopes 
of describing Ecorr accurately.  This is the general idea of many-body 
perturbation theory.  In practice, the naïve choice is sub-optimal, because it 
uses the non-interacting MOs (i.e. without the mean field of electron 
repulsion) as a reference.  It is much better to use the HF MOs as a 
reference.  We can accomplish this by defining the Fock operator ˆ F  (whose 
matrix representation is the Fock matrix) and writing 

Ĥ = F̂ + ( )Ĥ − F̂ ≡ ˆ ( )H 0 + ˆ ( )H 1  
Now, the reference ground sate will be HF and the perturbation will be ˆ H − ˆ F 

.  A little bit of work shows that physically this perturbation is the electron-
electron interaction minus the mean field predicted by HF.  Thus, the 
perturbation is smaller – since we’ve subtracted the average, we only have to 
worry about fluctuations from the average – and so we expect perturbation 
theory to work a little better with this reference.  This particular choice of 
reference was first proposed by Møller and Plesset (MP) and the nth order in 
the expansion is known as MPn theory. 
 
After some significant algebra, one can show that the MP1 energy (i.e 
including the interaction to first order) is identical to Hartree-Fock. Thus, 
the first order correlation energy is zero. This fact is one of the strongest 
arguments for using the HF reference: the interaction is, in some sense, as 
weak as possible because it has no effect on the energy to first order.  
Thus, the second order correction (MP2) is the lowest non-vanishing term 
and it is this level of MP theory that is most commonly used.  The empirical 
accuracy of MP2 theory is detailed in the table below.  As you can see, MP2 
is sometimes better than something like B3LYP, sometimes worse.  But MP2 
has the benefit that, if we are unsure of our answer we can in principle go to 
MP3, MP4,… to verify that the calculation is correct. 
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Property HF DFT MP2 
IPs and 

EAs 
±0.5 eV ±0.2 eV ±0.2 eV 

Bond 
Lengths -1% ±1 pm ±1 pm 

Vibrational 
Frequencies 

+10% +3% +3% 

Barrier 
Heights +30-50% -25% +10% 

Bond 
Energies 

-50% ±3 kcal/mol ±10 
kcal/mol 

 
In practice, one very rarely sees MP3 or MP4 calculations in the literature 
for two reasons.  The first is cost.  If we compile the computational cost of 
MP2 as compared to HF or DFT we find a somewhat sobering situation: 

Resource 
Storage 

CPU Time 

HF/DFT 
O(N2) 
O(N3) 

MP2 
O(N3) 

O(N4-5) 
Maximum 
Feasible N 

≈10,000 ≈1,000 

Maximum 
Feasible ≈1,000 ≈50 
Atoms 

Here we define the number of basis functions to be N, and keep track of the 
highest power of N required by the method with the notation O(Nx). Thus, 
MP2 requires exponentially more time and space than the corresponding SCF 
calculation.  This is compounded by the fact that, as discussed at the end of 
the basis set discussion, an accurate MP2 calculation requires a more 
accurate AO basis (e.g. QZ2P) to get the type of precision that HF or DFT 
can get in a smaller basis (e.g. DZP).  Thus, with an MP2 calculation, one is 
limited to much smaller molecules than with DFT or HF.  Going to MP3 or 
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even MP4 requires more storage and more CPU time, making them almost 
prohibitively expensive. 

The other problem is that the perturbative expansion will only converge if 
the perturbation is, in some sense, “small”.  A precise characterization of 
when the MP series does and does not converge is difficult to come by. By 
its nature peturbation theory is what is called an asymptotic expansion, and 
it is very difficult to guarantee convergence of these types of expansions.  
In practice, one can simply calculate very high orders of the MPn hierarchy 
and look for convergence.  In a very good case, we might see something like 
the figure below, which shows the MPn energies for the BH molecule as a 
function of n: 

Here, we see that the energy converges monotonically and rapidly with n: 
MP2 is within 0.012 au (0.3 eV) of the exact total energy (which is the 
dotted line), MP4 is within .005 au (0.1 eV), MP5 is within .002 au (0.03 eV) 
….  Meanwhile for N2 we see 

 
which has somewhat slower convergence as well as some oscillation. For neon 
we see very fast near-convergence, followed by divergence(!): 
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Coupling these findings with the fact that the cost of an MPn calculation 
increases dramatically as we increase n, it is very rarely advisable to do MP3 
or MP4 calculations in practice.  MP2 is the least expensive of the MP 
methods and statistically it is about as good as any of the other orders. 
 
Configuration Interaction (CI) 
In order to arrive at something that has reliable convergence, we have to 
attack the wave function directly  This is the idea behind configuration 
interaction (CI), which is based on the familiar steps of matrix mechanics. 
First, we find a complete basis.  Then operators become matrices, wave 
functions become vectors and all our quantum operations just become matrix 
algebra. For example, we can find the ground and excited state energies by 
looking for the eigenvalues of H.  It may seem like we have already done this 
with MO theory, but in MO theory we restricted our attention to one 
electron functions (orbitals) and in CI we take the brute force approach of 
looking at N particle functions, which results in the exact answer, albeit at a 
much higher cost. 
 
In order to define a complete basis, we use what is called Fock’s theorem.  
Given a complete set of orthonormal one electron functions (e.g. all the 
occupied and virtual molecular orbitals, ψi) then any many electron wave 
function can be written as a sum of all possible Slater determinants: 

ψ p (1) ψ q (1) ψ r (1) �

ψ
Ψ(1,2, 3,...) = ∑ C p (2) ψ q (2) ψ r (2)

pqr ... ≡ C
p<q<r<...

∑
ψ

pqr ... ψ pψ qψ r ...  
p (3) ψ (3) ψ (3) p<q r<...q r <

� �
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Here, the dots just indicate that the number of electrons is arbitrary.  For 
any particular number of electrons, the list terminates.  Thus, for four 
electrons: 

ψ p (1) ψ q (1) ψ r (1) ψ s (1)

ψ (2) ψ (2) ψ (2) ψ (2)
Ψ(1,2, 3, 4) = ∑ p q r s

Cpqrs  
p<q<r<s ψ p (3) ψ q (3) ψ r (3) ψ s (3)

ψ p (4) ψ q (4) ψ r (4) ψ s (4)

Using this expansion, we can represent all wave functions as vectors in this 
space and all operators as matrices.  Thus, we can find all the energy 
eigenstates by solving an orthogonal eigenvalue problem: 

H ⋅ Ci = EiCi . 
This expansion is known as Full CI and it is guaranteed to give us the right 
answer – unlike perturbation theory (where there are an infinite number of 
terms) here the expansion is finite and there is no question of convergence.  
The problem is that the dimension of this eigenvalue problem is very large.  
Say we have a benzene molecule in a minimal basis, which has 42 electrons 
and around 100 AOs.  To enumerate the number of terms in the sum, we 
recognize that there are (100 possible values of p) times (99 possible values 

⎛ 100⎞ 
of q) times (98 possible values of r) … for a total of ⎜ ⎟ ≈ 1x1030  unique 

⎝ 42 ⎠ 
basis states!  Thus something the size of benzene is out of the question, and 
FCI will be limited to very small molecules (like diatomics). 
 
In order to get something more tractable, we first rearrange the expansion.  
We note that one of the determinants involved will be the HF determinant, 
ΨHF.  There will also be a number of determinants that differ from the HF 
state by only one orbital (e.g. orbital i gets replaced by orbital a).  This 
singly substituted states will be denoted Ψ a

i .  Next, there will be 
determinants that differ by two orbitals (e.g. i and j get and replaced by a 

and b, denoted Ψ ab
ij  ).  Similarly, we will have triple, quadruple, quintuple … 

substitutions which allows us to reorganize the expansion as 

Ψ = Ψ + ∑CaΨa ab ab
HF i i + ∑Cij Ψ ij + ...  

ia ia

This expansion will terminate only after we have performed N substitutions 
(where N is the number of electrons).  Because this is an exact re-writing of 
the CI expansion, we have saved no effort in this step.  However, this way of 
writing things suggests a useful approximation. We recognize that the HF 
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state is a pretty good approximation to the ground state.  As a result, 
determinants that differ by many, many orbitals from ΨHF  shouldn’t be that 
important in the expansion, and so it is natural to truncate the expansion at 
some level.  Thus, if we only include Single substitutions, we have CIS.  If we 
include Double substitutions, too, we have CISD.  Adding Triples gives 
CISDT and so on.  In any of these cases, we still obtain the eigenstates by 
solving the linear eigenvalue problem H ⋅ Ci = EiCi . 
However, we have reduced the dimension of our Hilbert space (e.g. so that it 
only includes HF plus single and double substitutions) so the dimension of our 
matrices is much, much smaller.  These forms of truncation allow CI 
expansions to be routinely used in quantum chemistry. 

There is one other way to truncate CI that is based more on chemical 
intuition.  First, we recognize that each of the terms above can be 
associated with a group of stick diagrams: 

� � � � �.
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Thus, each of the basis states corresponds to a sum of many electron 
configurations.  The off-diagonal elements of the Hamiltonian matrix encode 
interactions between the configurations, which is where CI gets its name.  
Note that this picture is somewhat different than the physical picture we 
have in our head of electrons interacting, but mathematically the result is 
the same.  In any case, writing the expansion in this way, one sees that there 
are many strange terms that look as if they can hardly have any chemical 
relevance – ones that excite out of core orbitals and into high-energy virtual 
orbitals, excitations that unpair numerous spins….  It thus seems reasonable 
to manually pick the configurations one thinks will be most relevant to the 
problem at hand.  Thus, one might include the black configurations and ignore 
the red ones.  This is the strategy behind multiconfiguration SCF (MCSCF).  
One particularly successful variant of MCSCF is CASSCF, where one selects 
a subset of important orbitals (e.g. HOMO, LUMO and LUMO+1) and then 
includes all the excitations that involve only these orbitals.  In either case, 
it is clear that the answer obtained here will depend on how good our 
intuition is: if we pick the right configurations, we can get very good results.  
But if our intuition is bad and we pick bad configurations we will get bad 
results.  In practice, matters are not quite so dire as this, because one 
always has the convergence of the CI expansion to fall back on: if all else 
fails, including more and more configurations will eventually lead to the 
correct result if we have enough patience. 

There is one significant problem with truncated CI methods.  Suppose you 
approximate the ground state of a given molecule (M) with CISD: 

Ψ M = Ψ HF + ∑CaΨa
i i + Cab

ij Ψab
ij

ia
∑ ≡ Ψ HF + ΨS + Ψ D  

ia

Where ΨS and ΨD are sums of singly and doubly excited sates, respectively.  
Next, consider a pair of M molecules very far apart.  At the same level of 
approximation, the correct dimer wave function will be a product 
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Ψ M ...M = Ψ M = Ψ( )HF + ΨS + Ψ D ( )Ψ HF + ΨS + Ψ D

= Ψ HF Ψ HF + Ψ( )HF ΨS + ΨS Ψ HF + Ψ( )HF Ψ D + Ψ DΨ HF + ΨS ΨS

+ Ψ( )S Ψ D + Ψ DΨS + Ψ DΨ D  
In the last equality, we have grouped the terms according to the number of 
substitutions in the dimer: the first term has no substitutions (since it is 
just the product of the Hartree-Fock determinants for the two monomers), 
the second has singles, the third doubles, the fourth triples and the last 
quadruples [Note that the exictation levels add here. Hence, if we have two 
orbitals substituted on the left and two substituted on the right, the total 
wave function has four substitutions.]  Thus, we see that if we include only 
double substitutions for the monomer, that implies we need quadruple 
substitutions for the dimer (and six-fold substitutions for the trimer, eight-
fold for the tetramer…)  Hence, any fixed level of truncation (e.g. to doubles 
or triples or quadruples) will fail to describe non-interacting dimer wave 
functions correctly.  This failure is called the size consistency problem.  It 
manifests itself in a number of ways.  One prominent mistake here is that, 
since CISD wave functions never decompose as products, the energies do not 
add properly: 

ECISD ( )A...X ≠ ECISD(A) + ECISD ( )X . 
In fact, one can even prove the more stringent fact that for very large 
systems, the correlation energy per particle predicted by CISD goes to 
zero! Thus, one finds strange results like the following: if you compute the 
CISD energy of an infinite number copies of molecule A that are all far from 
one another, the total energy per molecule will actually come out the same as 
the HF energy for A: 

E
lim CISD ( )An = E ( )  
n→ ∞ n HF A

This error is called the size extensivity error.  It reflects the fact that, 
while we know the energy is an extensive quantity, in CISD the correlation 
energy is not extensive (i.e. it does not grow linearly with N).  Thus, when 
the system is large enough, the CISD correlation per particle is negligible. 
 
Coupled Cluster (CC) 
Because of the problems with size extensivity and size consistency, it is not 
meaningful to discuss the quality of results one expects with CI.  The rules 
would depend strongly on the size of the system and even on the presence or 
absence of spectator molecules.  Instead, we need to modify the CI 
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expansion.  Toward this end, we define an operator, ˆ C , that generates all 
the substituted configurations in the CI expansion: 

ĈΨ HF ≡ ∑CaΨa
i + Cab

ij Ψab
i ij + ...

ia
∑  

ia

We can use this operator to generate the entire CISD wave function:
ΨCISD = ( )1 + Ĉ Ψ HF ≡ Ψ HF + ∑Ca

i Ψa
i + ∑Cab

ij Ψab
ij   

ia ia

As we saw, this CI expansion led to difficulties with size extensivity. Rather 
than this linear prescription, Coupled Cluster postulates an exponential form 
for the wave function.  Thus, the CCSD wave function is 

ΨCCSD = eĈ Ψ HF = ( )1 + Ĉ + 1 ˆ
2 C 2 Ψ HF

= Ψ HF + ĈΨ + 1 ˆ
2 C 2

HF Ψ HF + ....  
In the last expression, the first term has zero substitutions, the second has 
up to double substitutions, the third has up to quadruple substitutions,…. 
While this exponential form may seem artificial at first, it is easily 
confirmed that this format alleviates the size consistency problem. Suppose 
molecules A and B are well represented by CCSD 

Ψ A
CCSD = eT̂A Ψ A

HF          Ψ B
CCSD = eT̂B Ψ B

HF  
Then the noninteracting A…B heterodimer will be well-represented by a 
product: 

Ψ ˆA....B
CCSD = Ψ A

CCSDΨ B
CCSD = eTA Ψ A

HFeT̂B Ψ HF e
ˆB = TA eT̂B Ψ A

HF Ψ B
HF

= eT̂ + ˆ
A TB Ψ Ψ B = e

ˆA TAB
HF HF Ψ A...B

HF  
Where on the last line we have made the definitions T̂AB ≡ T̂A + T̂B  and 
Ψ A...B ≡ Ψ A

HF Ψ B
HF .  Now, if ˆ ˆ

HF TA  and TB  involve at most double substitutions, then 
T̂AB ≡ T̂A + T̂B  will also involve at most doubles.  Thus, the product of two 
noninteracting CCSD wave functions is another CCSD wave function.  We 
conclude that a truncated CC prescription is capable of describing 
noninteracting fragments correctly.  As a result, the CCSD energy is 
properly size consistent and size extensive and consequently preferable to 
CISD for looking at large systems. 
 
There are truncated CC cousins for every CI approximation (e.g. CCS, CCSD, 
CCSDT, CCSDTQ…).  There is one approximation that has gained widespread 
appeal – CCSD(T).  As the name suggests, this includes all single and double 
substitutions and an approximate (perturbative) treatment of triple 
substitutions.  Because of the exponentiation, the algebra involved in the CC 
equations is quite complex – note that we haven’t even touched on how one 
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would solve for the C a

i  and C ab
ij  coefficients.  However, from a conceptual 

point of view, these details are less important.  Grossly, we understand 
CCSD as involving the same chemistry as CISD, but with a more elegant 
treatment of the excitations that deals properly with independent 
fragments.  The additional terms in CCSD do not increase the computational 
cost significantly relative to CISD; as a result CCSD calculations now far 
outnumber CISD calculations. 
 
CC theory can give very accurate descriptions of chemical properties.  Filling 
in our table: 

Property HF DFT MP2 CCSD(T) 
IPs and 

EAs 
±0.5 eV ±0.2 eV ±0.2 eV ±0.05 eV 

Bond 
Lengths 

-1% ±1 pm ±1 pm ±0.5 pm 

Vibrational 
Frequencies +10% +3% +3% ±5 cm-1 

Barrier 
Heights 

+30-50% -25% +10% ±2 kcal/mol 

Bond 
Energies -50% ±3 kcal/mol 

±10 
kcal/mol ±1 kcal/mol 

Thus we see that CCSD(T) is a phenomenal improvement over DFT.  The 
accuracy of CCSD(T) is such that the statistical errors are getting down to 
where small terms we have neglected (like relativity and the finite mass of 
the nucleus) actually become about as large as the inherent errors in 
CCSD(T).  For this reason, CCSD(T) has been termed the gold standard of 
quantum chemistry.  Indeed, CCSD(T) is as good or better than many 
experiments at determining precise molecular properties. 
 
Unfortunately, for correlated methods there is no free lunch – the 
increased accuracy comes at a cost: CCSD is exponentially more expensive 
than even MP2:  

Resource HF/DFT MP2 CCSD 
Storage O(N2) O(N3) O(N4) 

CPU Time O(N3) O(N4-5) O(N6) 
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Maximum 
Feasible N 

≈10,000 ≈1,000 ≈500 

Maximum 
Feasible 
Atoms 

≈1,000 ≈50 ≈10 

As computers get faster and algorithms get smarter, the number of feasible 
atoms with each method will increase, but the correlated methods like CCSD 
and MP2 will always be relatively more expensive. 

HF 
CASSCF 

DFT 

MP2 

CCSD 

CCSD(T) 

Method 

STO-3G 
3-21G 

6-31G(d,p) 
TZVP 

6-311G+(2df,p) 

Exact
Answe

Basis 

Feasible 
Calculations 

Summary 
Combining what we have learned, then, the approximations we can make fit 
nicely into a two-dimensional parameter space (see above). On the one axis, 
we have the basis sets we can choose from.  On the other, we have the 
different methods for approximating the energy.  The get close to the 
exact answer, we need to employ a large basis set and an accurate energy 
method.  Unfortunately, both increasing the size of the basis and improving 
the method tend to slow our calculations down. Given that we don’t want to 
wait years and years to find out the result of a calculation, modern 
computers therefore limit how accurate our answers can be (as illustrated 
with the red line above).  As we become experts at what is and is not 
feasible with current computing power, we become better able to get good 
accuracy for a variety of problems. 
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