
5.61 Physical Chemistry    Lecture #24-25                      1 

  
 

MOLECULAR ORBITAL THEORY- PART I
At this point, we have nearly completed our crash-course introduction to 
quantum mechanics and we’re finally ready to deal with molecules.  Hooray!  
To begin with, we are going to treat what is absolutely the simplest 
molecule we can imagine: H+

 2
.  This simple molecule will allow us to work 

out the basic ideas of what will become molecular orbital (MO) theory. 
 
We set up our coordinate 
system as shown at right, with 
the electron positioned at r, 
and the two nuclei positioned 
at points RA and RB, at a 
distance R from one another.  
The Hamiltonian is easy to 
write down: 

 
Now, just as was the case for atoms, we would like a picture where we can 
separate the electronic motion from the nuclear motion.  For helium, we 
did this by noting that the nucleus was much heavier than the electrons 
and so we could approximate the center of mass coordinates of the 
system by placing the nucleus at the origin.  For molecules, we will make a 
similar approximation, called the Born-Oppenheimer approximation.  
Here, we note again that the nuclei are much heavier than the electrons.  
As a result, they will move much more slowly than the light electrons.  
Thus, from the point of view of the electrons, the nuclei are almost 
sitting still and so the moving electrons see a static field that arises 
from fixed nuclei.  A useful analogy here is that of gnats flying around on 
the back of an elephant.  The elephant may be moving, but from the gnats’ 
point of view, the elephant is always more or less sitting still.  The 
electrons are like the gnats and the nucleus is like the elephant. 
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The result is that, if we are interested in the electrons, we can to a good 
approximation fix the nuclear positions – RA and RB – and just look at the 
motion of the electrons in a molecule.  This is the Born-Oppenheimer 
approximation, which is sometimes also called the clamped-nucleus 
approximation, for obvious reasons.  Once the nuclei are clamped, we can 
make two simplifications of our Hamiltonian.  First, we can neglect the 
kinetic energies of the nuclei because they are not moving.  Second, because 
the nuclei are fixed, we can replace the operators R̂A  and R̂B  with the 
numbers RA and RB.  Thus, our Hamiltonian reduces to 

( )
2∇ˆ 1 1 1H R R, = − r  − − +el A B 2 R r− −ˆ ˆR r R −RA B A B

where the last term is now just a number – the electrostatic repulsion 
between two protons at a fixed separation. The second and third terms 
depend only on the position of the electron, r, and not its momentum, so 
we immediately identify those as a potential and write: 

H V( )
2∇ˆ , 1, = − r R RR R + A B r̂  +el A B 2 eff ( )

R R−A B
This Hamiltonian now only contains operators for the electron (hence the 
subscript “el”), and we write the Schrodinger equation for the electron as: 

Ĥel ( )R ψ el ( )r = Eelψ el ( )r  
where ψel is the wave function for the single electron in H +

2 . [Note: here we 
use the shorthand R to denote both RA and RB.] However, this Schrodinger 
equation does not tell the whole story. Because the Hamiltonian depends on 
the nuclear positions, the electronic wavefunction will also depend on where 
the nuclei are. For example, the figure below shows the difference between 
the effective potentials the electron “feels” when the nuclei are close 
together versus far apart: 

 

R Small R Large 

Veff(r) 
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Because the electron feels a different potential at each bond distance R, 
the wavefunction will also depend on R.  In the same limits as above, we will 
have: 

 
Finally, because the electron eigenfunction, ψel, depends on R then the 
eigenenergy of the electron, Eel(R), will also depend on the bond length. Thus 
a more precise form of the electronic Schrodinger equation would be: 

Ĥel ( )R ψ el ( )r;R = E  el ( )R ψ el ( )r,R

where the additional dependence of everything on the value of R is made 
explicit. Mechanically, then, what we have to do is solve for the electronic 
eigenstates, ψel, and their associated eigenvalues, Eel(R), at many different 
fixed values of R.  The way that these eigenvalues change with R will tell us 
about how the energy of the molecule changes as we stretch or shrink the 
bond.  This is the central idea of the Born-Oppenheimer approximation, and 
it is really very fundamental to how chemists think about molecules.  We 
think about classical point-like nuclei clamped at various different positions, 
with the quantum mechanical electrons whizzing about and gluing the nuclei 
together.  When the nuclei move, the energy of the system changes because 
the energies of the electronic orbitals change as well.  There are certain 
situations where this approximation breaks down, but for the most part the 
Born-Oppenheimer picture provides an extremely useful and accurate way to 
think about chemistry.  
 
How are we going to solve for these eigenstates?  It should be clear that 
looking for exact solutions is going to lead to problems in general.  Even for 
H +

2  the solutions are extremely complicated and for anything more complex 
than H +

2 exact solutions are impossible.  So we have to resort to 
approximations again.  The first thing we note is that if we look closely at 
our intuitive picture of the H +

2  eigenstates above, we recognize that these 
molecular eigenstates look very much like the sum of the 1s atomic orbitals 
for the two hydrogen atoms.  That is, we note that to a good approximation 
we should be able to write:  

ψ el ( )r c≈ +1 21 1sA ( )r c sB ( )r  

 R Small R Large 

ψel(r) 
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where c1 and c2 are constants.  In the common jargon, the function on the 
left is called a molecular orbital (MO), whereas the functions on the right 
are called atomic orbitals (AOs). If we write our MOs as sums of AOs, we 
are using what is called the linear combination of atomic orbitals (LCAO) 
approach.  The challenge, in general, is to determine the “best” choices for c1 
and c2 – for H +

2  it looks like the best choice for the ground state will be 
c1=c2.  But how can we be sure this is really the best we can do?  And what 
about if we want something other than the ground state?  Or if we want to 
describe a more complicated molecule like HeH+2? 
 
THE VARIATIONAL PRINCIPLE 
In order to make further progress, we will use the Variational Principle 
to predict a better estimate of the ground state energy. This method is 
very general and its use in physical chemistry is widespread.  Assume you 
have a Hamiltonian (such as H +

2 ) but you don’t know the ground state 
energy E0 and or ground state eigenfunction φ0.    

H Eˆ ˆφ φ * *
0 0= ⇒0         H = ˆ  ∫ ∫φ0Hφ0dτ = φ0E0φ0dτ = E0

Now, assume we have a guess, ψ , at the ground state wavefunction, which we 
will call the trial wavefunction.  Compute the average value of the energy for 
the trial wavefunction: 

*H dˆ τ
E H    ψ ψ* ˆ
avg = =∫ψ ψ

∫ dτ    (if ψ  normalized) 
∫ψ ψ* dτ

the Variational Theorem tells us that Eavg≥E0 for any choice of the trial 
function ψ!  This makes physical sense, because the ground state energy 
is, by definition, the lowest possible energy, so it would be nonsense for 
the average energy to be lower. 
 
SIDEBAR: PROOF OF VARIATIONAL THEOREM 
Expand ψ  (assumed normalized) as linear combination of the unknown 
eigenstates, φn , of the Hamiltonian: 

ψ = ∑an nφ  
n

Note that in practice you will not know these eigenstates.  The important 
point is that no matter what function you choose you can always expand it in 
terms of the infinite set of orthonormal eigenstates of Ĥ . 
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∫ ∫ψ ψ* *d aτ = =∑ ∑* * 2
n ma φn φmdτ an ma δmn = ∑ an = 1

n m, ,n m n

g ∫ ∫ψ ψ* *ˆ ˆτ ∑ ∑* *  Eav = =H d an am nφ Hφmd aτ = n am n *Em md
n m, ,n m

∫ φ φ τ

= =∑ ∑a a* E δ a 2
n m m mn n En

n m, n

Now, subtracting the ground state energy from the average  
      E E0 0= •1 = ∑ a 2

n E0
n

 

⇒ −E 2 2
avg E0 0= ∑ ∑a En n − a En =

n n
∑ a 2

n ( )En − E0 ≥ 0 since En ≥ E
n

Where, in the last line we have noted that the sum of terms that are non-
negative must also be non-negative.  It is important to note that the 
equals sign is only obtained if an=0 for all states that have En>E0.  In this 
situation, ψ  actually is the ground state of the system (or at least one 
ground state, if the ground state is degenerate).  
 
The variational method does two things for us.  First, it gives us a means of 
comparing two different wavefunctions and telling which one is closer to the 
ground state – the one that has a lower average energy is the better 
approximation.  Second, if we include parameters in our wavefunction 
variation gives us a means of optimizing the parameters in the following way.  
Assume that ψ  depends on some parameters c – such as is the case for our 
LCAO wavefunction above. We’ll put the parameters in brackets -ψ[c] – in 
order to differentiate them from things like positions that are inside of 
parenthesis -ψ(r).Then the average energy will depend on these parameters: 

ψ ψ
E ∫ [ ]c c*H dˆ [ ] τ
avg ( )c =  

∫ψ ψ[ ]c c* [ ]dτ
Note that, using the variational principle, the best parameters will be the 
ones that minimize the energy.  Thus, the best parameters will satisfy 

( ) ∫ψ ψ[ ]c c*H dˆ∂Eave c ∂ [ ] τ
= =* 0 

∂ ∂c ci i ∫ψ ψ[ ]c c[ ]dτ

Thus, we can solve for the optimal parameters without knowing anything 
about the exact eigenstates! 

0
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Let us apply this in the particular case of our LCAO-MO treatment of H +

2 .  
Our trial wavefunction is: 

ψ el [ ]c = +c s1 21 1A c sB  
where c=(c1  c2).  We want to determine the best values of c1 and c2 and 
the variational theorem tells us we need to minimize the average energy 
to find the right values.  First, we compute the average energy.  The 
numerator gives: 

∫ ∫ψ ψ*H dˆ ˆ
el el el τ = +( )c1 21 1s *

A c sB H ( )c1 21 1sA + c sB dτ

= c c* *∫ ∫s *
1 1 1 1A eĤ ˆ

l sAdτ τ τ+ + +c c1 2 1 1sA eH l sBd c2 c1 ∫1s ĤB 1 c *
el sAd 2 c2 ∫1sBHel1sBd

 
≡H11 ≡H12 ≡H21 ≡H22 

≡ +c * *
1 1H c c H c + c *H *

1 1 1 12 2 2 21c c1 + 2 H22c2  
while the normalization integral gives: 

∫ ∫ψ ψ* τ = +( )c *
el eld 1 21 1s cA sB ( )c1 21 1s cA + sB dτ

= c * *
1 1c ∫ ∫ ∫1 1sA As d cτ τ τ+ + +c2 1 1s *

1 A sBd c2 c1 1sB1s
*

Ad c2 c2 ∫1sB1sBdτ

≡S11 ≡S12 ≡S21 ≡S22 

≡ +c * *S c c S c + c *S c c+ *
1 11 1 1 12 2 2 21 1 2 S22c2  

So that the average energy takes the form: 

( ) c * *
1 1H 1c c1 + +H c * *

E c 1 12 2 c2 H21c c1 += 2 H22c2
avg  

c * *S 1c c1 + +1 1S 2c2 c *
2 S21c c *

1 1 1 + 2 S22c2

We note that there are some simplifications we could have made to this 
formula: for example, since our 1s functions are normalized S11=S22=1.  By 
not making these simplifications, our final expressions will be a little more 
general and that will help us use them in more situations. 
 
Now, we want to minimize this average energy with respect to c1 and c2.  
Taking the derivative with respect to c1 and setting it equal to zero [Note: 
when dealing with complex numbers and taking derivatives one must treat 
variables and their complex conjugates as independent variables.  Thus d/dc1 
has no effect on c *

1 ]: 

ˆ τ
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∂Eavg c* *

= 0 = 1H11 + c2H21

∂c c*S c + c*S c + c* *
1 1 11 1 1 12 2 2S21c1 + c2S22c2  

c*
1H11c1 + c*

1H12c2 + c*H *
2 21c1 + c2H22c−

(
2 c*
2 ( )1S11 + c*

2S21
c*

1S11c1 + c*
1S12c2 + c*

2S c1 + c*
21 2S22c2

( ) c*H c + c*H c + c*H c + c*
* H c

⇒ 0 = c1H11 + c*
2H − 1 11 1 1 12 2 2 21 1 2 22 2 *

21 c* c S + c*S
1S11c1 + c* c *

1S12 2 + c2S21c
( )1 11

1 + c* 2
2S22c

21
2  

⇒ 0 = ( )c*
1H11 + c*

2H21 − Eavg ( )c*
1S

*
11 + c2S21

Applying the same procedure to c2: 
∂Eavg c H* *

= = 1 12 + c2 H0 22

∂ +c c * *
2 1 S11c1 c1 S c + c *

2 S
*

12 2 21c1 + c2 S22c2

c * *H c c H c c * *  
1 1 + +1 12 2 2 H21c c1 + 2 H22c− 1 1 2

2 (c S* *c
( 1 12 2 S22
c * * * *

1 1S 1c c1 + +1 1S 2c2 c2 S21c c1 + 2 S22c2

( ) c * * * *

⇒ =0 c H* *+ c H − 1 1H 1c c1 + +1 1H 2c2 c2 H21c c1 + 2 H 22c2
1 1 * * c * *

2 2 22 S + c S
c1 1S 1c c1 + +1 1S S (

2c c *S c c * 1 12 2 22
2 2 21 1 + 2 22c2  

⇒ =0 ( )c H* *+ − * *
1 12 2c H22 Eavg (c1 S12 2+ c S22 )

We notice that the expressions above look strikingly like matrix-vector 
operations.  We can make this explicit if we define the Hamiltonian matrix: 

⎛ ⎞
⎛ ⎞ 1H ∫1s ˆ dH τ s

 
AĤel1s⎜ AHel1sA ∫ B dτ

H ≡ ⎜
11 12 ⎟

⎟ ≡  
⎜ H21 H ⎜ ⎟
⎝ 22 ⎟⎠ 1s ˆ⎜ BHel1sA dτ

⎝ ∫ ∫1s ĤB el1sB dτ ⎟⎠

and the Overlap matrix: 
⎛

⎛ ⎞ ∫ ∫1 1s s s
⎜ A Adτ τ1 1 ⎞

S S A sBd
12 ⎟S ≡ ≡⎜ ⎟

11  
⎝ ⎠S S21 22

⎜ ⎟⎜ ∫ ∫1 1s sB Adτ τ1 1sB s d ⎟⎝ ⎠B

Then the best values of c1 and c2 satisfy the matrix eigenvalue equation: 

( )* * ⎛ ⎞H H11 12 E * * ⎛ S11 S12 ⎞
c c1 2 ⎜ ⎟ = avg c1 2c ⎜ ⎟  

⎝ ⎠H H21 22
( )

⎝ S21 S22 ⎠

Which means that: 
∂Eavg = 0 ⇔ c†iH = E

∂c avgc†iS         Eq. 1 

This equation doesn’t look so familiar yet, so we need to massage it a bit.  
First, it turns out that if we had taken the derivatives with respect to c *

1  

)

)
)+

)
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and c * 

2 instead of c1 and c2, we would have gotten a slightly different 
equation: 

⎛ ⎞H H11 12 ⎛ c1 ⎞ ⎛ S11 S12 ⎞ ⎛ c
⎜ ⎟ = E 1 ⎞

⎜ ⎟H H avg ⎜ ⎟ ⎜ ⎟ 
⎝ 21 22 ⎠ ⎝ ⎠c2 ⎝ S21 S22 ⎠ ⎝ ⎠c2

or 
∂Eavg = 0 ⇔ Hic = E

∂c* avgSic        Eq. 2 

Taking the derivatives with respect to c * and c * 
1 2 is mathematically 

equivalent to taking the derivatives with respect to c1 and c2 [because we 
can’t change c1 without changing its complex conjugate, and vice versa].  
Thus, the two matrix equations (Eqs. 1&2) above are precisely equivalent, and 
the second version is a little more familiar.  We can make it even more 
familiar if we think about the limit where 1sA and 1sB are orthogonal (e.g. 
when the atoms are very, very far apart).  Then we would have for the 
Overlap matrix: 

⎛ ⎞∫ ∫1 1s sA Adτ τ1 1sA sBd
⎜ ⎟ ⎛ ⎞1 0

S ≡ = =  ⎜ ⎟ ⎜ ⎟
⎜ ⎟∫ ∫τ τ 0 11 1s sB Ad 1 1s s d ⎝ ⎠
⎝ ⎠B B

Thus, in an orthonormal basis the overlap matrix is just the identity matrix 
and we can write Eq. 2 as: 

∂Eavg = 0 ⇔ Hic = Eavgc  
∂c*

Now this equation is in a form where we certainly recognize it: this is an 
eigenvalue equation.  Because of its close relationship with the standard 
eigenvalue equation, Eq. 2 is usually called a Generalized Eigenvalue 
Equation. 
 
In any case, we see the quite powerful result that the Variational theorem 
allows us to turn operator algebra into matrix algebra.  Looking for the 
lowest energy LCAO state is equivalent to looking for the lowest eigenvalue 
of the Hamiltonian matrix H.  Further, looking for the best c1 and c2 is 
equivalent to finding the lowest eigenvector of H. 
 
Matrix Mechanics 
The variational principle illustrates what is actually a very general and 
powerful way of thinking and computing known as matrix mechanics (MM).  

1
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Matrix mechancs is actually completely equivalent to the wave mechanics 
we’ve been discussing so far, but it has two major benefits. First, it places 
emphasis on the global structure of the problem, allowing us to make 
predictions about the eigenstates of abstract systems with a modest amount 
of effort and often without doing a single integral(!).  Second, because MM 
involves linear algebra rather than symbolic calculus, it is much easier to 
program a computer to solve problems in MM than in wave mechanics. 
 
For the purposes of this class, we can think of MM as a different language 
for quantum mechanics.  We know how to write down many expressions in 
wave mechanics, and it is just a question of translating those expressions 
into MM before we do computations.  Toward that end, we summarize a 
lexicon for MM expressions in terms of their wave counterparts below.  All 
of these equivalences can be proven mathematically, but we will rarely have 
cause to worry about those details. 

Wave Mechanics Matrix Mechanics 
 ⎛ c1⎞ 

⎜ c ⎟ conjugate ψ=c1φ1+c2φ2+c3φ3+… � 
ψ = ⎜ 2⎟  transpose (φi are basis functions) ⎜ c ⎟ 

 ⎜ 
3

⎟ ⎝ � ⎠ 

( )
  

ψ*=c1*φ1*+c2*φ2*+c3*φ3*+… � 
ψ † = c* c* *

   1 2 c3 …  

ˆ O  (operator) O (matrix); ∫ φ* ˆ Oij = i O φ j dτ  
  

ˆ O  is Hermitian O = O†
 

  

∫ � � ψ ˆ *O χdτ  ψ † ⋅ O ⋅ χ    
  
? S (overlap); Sij = ∫ φ*

i φ j dτ  
  

∫ � ψ * χdτ  ψ †
� 

⋅ S ⋅ χ    
  � � 

ˆ O ψ εψ  O ⋅ψ = ε S ⋅ψ  =   
 

We’ve already encountered some of these rules above in dealing with the 
variational principle; the Hamiltonian became a matrix, the overlap matrix 
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cropped up, wavefunctions became row and column vectors, the eigenvalues 
of the operator were represented by the eigenvalues of the matrix….   
Mathematically, the overlap matrix is an annoyance; it comes from the fact 
that we haven’t chosen our basis functions so that they are orthonormal.  If 
they were orthonormal, the overlap matrix would become the identity matrix 
(unity along the diagonal, zeroes off) and we could just ignore it.  We 
illustrated this above for the case of H +

2 . If the basis functions are 
orthonormal, we also have a very nice interpretation for the coefficients, ci.  
Specifically, |ci|2 is the probability of finding the system in state i.  This 
last point is very useful in interpreting MM and will come up frequently in 
the PSets. 
 
Let’s go ahead and apply what we’ve learned to obtain the MO coefficients c1 
and c2 for H +

2 .  At this point we make use of several simplifications.  The 
off-diagonal matrix elements of H are identical because the Hamiltonian is 
Hermitian and the orbitals are real: 

∫
*

1s ˆ
AH 1s * ˆ ˆ

el B dτ = ( )∫1sBHel1sA dτ = ∫1sBHel1sA dτ ≡ V12  

Meanwhile, the diagonal elements are also equal, but for a different reason.  
The diagonal elements are the average energies of the states 1sA and 1sB.  If 
these energies were different, it would imply that having the electron on one 
side of H +

2  was more energetically favorable than having it on the other, 
which would be very puzzling.  So we conclude 

∫1s ˆ
AHel1s ∫ ĤA dτ = 1sB el1sB dτ ≡ ε  

Finally, we remember that 1sA and 1sB are normalized, so that 

∫ ∫1 1s sA Adτ τ= =1sB1sBd 1 

and because the 1s orbitals are real, the off-diagonal elements of S are also 
the same: 

S s12 = = =∫ ∫1 1A Bs dτ τ1sB1sAd S21 . 

Incorporating all these simplifications gives us the generalized eigenvalue 
equation: 

⎛ ε V c12 ⎞ ⎛ ⎞1 ⎛ 1 S12 ⎞ ⎛ ⎞c
⎜ ⎟ ⎜ ⎟ = E ⎜ ⎟ ⎜ ⎟

1  
⎝V cε avg

12 ⎠ ⎝ ⎠2 ⎝ S21 1 ⎠ ⎝ ⎠c2

All your favorite mathematical programs (Matlab, Mathematica, Maple, 
MathCad…) are capable of solving for the generalized eigenvalues and 
eigenvectors, and for more complicated cases we suggest you use them.  
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However, this case is simple enough that we can solve it by guess-and test.  
Based on our physical intuition above, we guess that the correct eigenvector 
will have c1=c2.  Plugging this in, we find: 

⎛ ε V12
⎞ ⎛ c ⎞ ⎛ 1 S ⎞ ⎛ c ⎞

⎜ ⎟ ⎜
1

⎟ = E ⎜
12

⎜ ⎟⎜ V12 ε ⎟ ⎜ c1 ⎟ avg ⎟
1

⎜ S21 1 ⎟ ⎜ c1 ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ( )ε + V12 c ⎞ ⎛
1 ( )1 + S c ⎞

⇒ ⎜ ⎟ = Eavg ⎜ 12 1 ⎟  
⎜ ( )ε + V12 c1 ⎟ ⎜ ( )1 +⎝ ⎠ ⎝ S12 c1 ⎟⎠

ε + V⇒ Eavg = 12 ≡ E
1 + σS12

Thus, our guess is correct and one of the eigenvectors of this matrix has 
c +

1=c2. This eigenvector is the σ-bonding state of H2 , and we can write down 
the associated orbital as: 

ψ σ
el = +c s1 21 1 1A c sB = +c s1 A c s11 B ∝ 1sA + 1sB  

where in the last expression we have noted that c1 is just a normalization 
constant. In freshman chemistry, we taught you that the σ-bonding orbital 
existed, and this is where it comes from.   
 
We can also get the σ∗-antibonding 

 

ψσ(r) 

ψσ(r) 

orbital from the variational 
procedure.  Since the matrix is a 
2x2 it has two unique eigenvalues: 
the lowest one (which we just 
found above) is bonding and the 
other is antibonding.  We can again
guess the form of the antibonding 
eigenvector, since we know it has 
the characteristic shape +/-, so 
that we guess the solution is c1=-
c2: 
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⎛ ε V12
⎞ ⎛ c1

⎞ ⎛ 1 S ⎞ ⎛ c ⎞
⎜ ⎟ ⎜ ⎟ = Eavg ⎜

12
⎟ ⎜

1
⎟⎜ ε ⎟⎝ V12 ⎜ −⎠ ⎝ c1 ⎟ ⎜ ⎟⎠ ⎝ S21 1 ⎜ −⎠ ⎝ c1 ⎟⎠

⎛ ( )ε − V
⇒ 12 c ⎞ ⎛

1 ( )1 − S12 c ⎞
⎜ ⎟ = 1

⎜ − ( )
E

ε − ⎟ avg ⎜ ⎟  
⎝ V12 c1 ⎜ −⎠ ( )1 −⎝ S12 c1 ⎟⎠

ε − V⇒ E 12
avg = = E

1 − σS *
12

so, indeed the other eigenvector has c1=-c2.  The corresponding antibonding 
orbital is given by: 

ψ σ *
el = +c s1 21 1 1A c sB = −c s1 A c s11 B ∝ 1sA − 1sB  

where we note again that c1 is just a normalization constant.  Given these 
forms for the bonding and antibonding orbitals, we can draw a simple picture 
for the H +

2  MOs (see above). 
 
We can incorporate the energies obtained above into a simple MO diagram of 
H +

2 : 
ε − V12

 

E1sA=ε E1sB=ε 

Eσ= 12

12

On the left and right, we draw the energies of the atomic orbitals (1sA and 
1sB) that make up our molecular orbitals (σ and σ*) in the center.  We note 
that when the atoms come together the energy of the bonding and 
antibonding orbitals are shifted by different amounts: 

ε ε− −V V12 12 ε (1 − S12 ) ε S
E E− = − ε = − = 12 − V12

σ * 1s 1 1− −S S12 12 1 − S12 1 − S12  
ε ε+ +V S

− − =12 (1
E E = ε 12 ) ε ε+ V S12 − V12

1 *s − =12
σ 1 1+ +S S12 12 1 + S12 1 + S12

1

V

S

ε +
+

 

12

Eσ∗=
1 S−
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Now, S12 is the overlap between two 1s orbitals.  Since these orbitals are 
never negative, S12 must be a positive number.  Thus, the first denominator 
is greater than the second, from which we conclude 

ε εS V12 − −12 S V
E E 12 12

σ * 1− =s s> = E
1 1 1 − E

− +S S *  
12 12

Thus, the antibonding orbital is destabilized more than the bonding orbital is 
stabilized.  This conclusion need not hold for all diatomic molecules, but it is 
a good rule of thumb.  This effect is called overlap repulsion.  Note that in 
the special case where the overlap between the orbitals is negligible, S12 

goes to zero and the two orbitals are shifted by equal amounts.  However, 
when is S12 nonzero there are two effects that shift the energies: the 
physical interaction between the atoms and the fact that the 1sA and 1sB 
orbitals are not orthogonal.  When we diagonalize H, we account for both 
these effects, and the orthogonality constraint pushes the orbitals upwards 
in energy. 
 
Now, the rather miraculous thing about this simple MO treatment of H +

2  is 
that it actually predicts the formation of a chemical bond between two 
atoms!  To see this, we remember that the energies of the σσ and σ* will 
depend on the distance between the nuclei.   This is a direct result of the 
Born-Oppenheimer approximation we made at the start of this section.  At 
some expense of time, the explicit forms of S12(R), ε(R) and V12(R) can be 
worked out using the explicit forms for the hydrogen atomic orbitals.  For 
more about how these integrals are evaluated, you can look at McQ Problems 
10.6-10.11.  The integrals themselves are not interesting, but the results are: 

S = e− R ( )1 + R + 1
3 R2

H12 = e− R ⎛ 1 − 1 − 7 R − 1 R2 ⎞  ⎝ R 2 6 6 ⎠ 

1 −2R ⎛ 1 ⎞ ε = − 2 + e 1 +⎝ R⎠ 
Given that all the constituent integrals are R-dependent, it should be clear 
that the MO energies, Eσ and Eσ, will both depend on R.  The resulting 
energies are plotted below.  The clear conclusion is that, in the σ state, the 
energy is typically lower when the two atoms are close together than when 
they are far apart – the two atoms are bound to one another!  Further, there 
is a characteristic distance that the atoms like to be relative to one another 

σ
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– the energy is lowest at about 1.3 Angstrom.  At this point, the one-electron 
bond is worth about 1.7 eV.  Both of these numbers are quite close to 
physical reality, where the true bond length is about 1.0 Angstrom and the 
binding energy is about 2.8 eV.  Thus, from this model we would conclude 
that chemical bonds must exist, even if we didn’t know from experience that 
they do.  Note that, as you might have guessed, the antibonding orbital is 
unbound at all separations, R. 

 

Eσ*-E1s 

Eσ-E1s 
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