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MANY ELECTRON ATOMS 
At this point, we see that quantum mechanics allows us to understand the helium atom, 
at least qualitatively.  What about atoms with more than two electrons, such as lithium 
or carbon? Here, we discuss how the independent particle model (IPM) is capable of 
giving a realistic picture of atomic structure in essentially an analogous fashion to the 
helium case.  To begin with, we set up our coordinates so that the nucleus is at the 
origin and the N electrons are at positions r1, r2, r3, …rN. In terms of these variables, 
we can quickly write down the many-electron Hamiltonian 

1∑
N N

2 ∑ Z N N 1Ĥ = − 2 ∇ j − +
j=1 j=1 r

∑∑
j j=1 k< j r j − rk  

  
 Kinetic Energy     e-Nucleus Attraction   e-e Repulsion 

 
Note that the number of electrons (N) need not be the same as the nuclear charge 
(Z) – we might, for example, have a cation where N<Z or an anion where N>Z. Thus, the 
Hamiltonian has the same three sources of energy as in the two electron case, but the 
sheer number of electrons makes the algebra more complicated.  As before, we note 
that we can make the Hamiltonian separable if we neglect the electron-electron 
repulsion: 

Z N Z N ⎛ Z ⎞∑
N

Ĥ − 1 2
2 ∇2 1 ˆ

IP = j −∑ =∑⎜− 2∇ j − ⎟ ≡∑hj  
j=1 j=1 rj j=1 ⎝ rj ⎠ j=1

where each of the independent Hamiltonians ĥi  describes a single electron in the field 
of a nucleus of charge +Z and the subscript “IP” reminds us that this Hamiltonian 
describes the particles as if they were independent of one another.  Based on our 
experience with separable Hamiltonians, we can immediately write down the 
eigenstates of this Hamiltonian as products with energies given as sums of the 
independent electron energies: 

Ψ =ψ k (1)ψ k (2)ψ k (3)...ψ  k (N )  E = Ek + Ek + Ek + ...+ E  
1 2 3 N 1 2 3 kN

Where (1) is a shorthand for (r1,σ1) and k ni i≡ { , ,li mi , si}  ki ≡ {ni,li,ml,i,ms,i}specifies all 
the quantum numbers for a given hydrogen atom eigenstate.  Of course, there is a 
problem with these eigenstates: they are not antisymmetric.  For the Helium atom, we 
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fixed this by making an explicitly antisymmetric combination of two degenerate 
product states: 

1 ( ) 1 ψ1sα (1) ψ ( )
ψ sα (

2
1 1)ψ (2) s

−ψ (2)ψ (1) 1 α
=1sβ 1sα 1sβ2 2 ψ1sβ (1) ψ1sβ (2)

where on the right we have noted that this antisymmetric product can also be written 
as a determinant of a 2x2 matrix.  As it turns out, it is straightforward to extend this 
idea to generate an N particle antisymetric state by computing an NxN determinant 
called a Slater Determinant: 

ψ k1 (1) ψ k2 (1) ψ k3 (1)  ψ kN (1)
ψ k1 (2) ψ k2 (2) ψ k3 (2)  ψ kN (2)

1
Ψ(1,2,3,...N ) = ψ k1 (3) ψ k2 (3) ψ k3 (3)  ψ

N! kN (3)  
    

  ψ k1 (N ) ψ k2 (N ) ψ k3 (N )  ψ kN (N )
As you can imagine, the algebra required to compute integrals involving Slater 
determinants is extremely difficult.  It is therefore most important that you realize 
several things about these states so that you can avoid unnecessary algebra: 
• A Slater determinant corresponds to a single stick diagram.  This is easy to 

see by example: 

2px 1 1s sα β( ) 1 (1) 2sα (1) 2pxα (1)
1 2s sα β1 2 2sα 2 2p α 22s ( ) ( ) ( ) ( )x

1 3s sα β( ) 1 (3) 2sα (3) 2pxα (3)
1s 1 4s sα β( ) 1 (4) 2sα (4) 2pxα (4)

 
It should be clear that w•..Ψ  (1,2,3,4) e can extend this idea to associate a determinant with 
an arbitrary stick diagram.  Further, recall that for the excited states of helium 
we had a problem writing certain stick diagrams as a (space)x(spin) product and 
had to make linear combinations of certain states to force things to separate.  
Because of the direct correspondence of stick diagrams and Slater 
determinants, the same pitfall arises here: Slater determinants sometimes may 
not be representable as a (space)x(spin) product, in which case a linear 
combination of Slater determinants must be used instead.  This generally only 
happens for systems with unpaired electrons, like the 1s↑2s↓ configuration of 
helium or the …2px↑2py↓ configuration of carbon. 
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• A Slater determinant is anitsymmetric upon exchange of any two electrons.  
We recall that if we take a matrix and interchange two its rows, the determinant 
changes sign.  Thus, interchanging 1 and 2 above, for example: 

ψ k1
(2) ψ k (2) ψ k (2)  ψ k (2)

ψ k1
(1)

2

ψ k2
(1)

3

ψ k3
(1)

N

 ψ (1
1 k

,
N

)
Ψ(2,1,3 ...N) = ψ )

N! k1
(3) ψ k2

(3 ψ k3
(3)  ψ kN

(3)
 

    

  ψ k1
(N) ψ k2

(N) ψ k3
(N)  ψ kN

(N)
 

ψ k1
(1) ψ k (1) ψ
(2)

2 k

(2)
3

(1)  ψ k

ψ k1
ψ k2

ψ k3
(2)

N
(1)

 ψ
Interchange 

⎯Rows 1 ⎯ ⎯& 2 1 kN
(2)

⎯ →  − ψ
N! k1

(3) ψ k2
(3) ψ k3

(3)  ψ kN
(3) = −Ψ(1,2,3...N) A 

    

  ψ k1
(N) ψ k2

(N) ψ k3
(N)  ψ kN

(N)
similar argument applies to any pair of indices, and so the Slater determinant 
antisymmetric under any i↔j interchange. 

• The determinant is zero if the same orbital appears twice.  We recall that if 
we take a matrix and interchange two of its columns, the determinant also 
changes sign.  Assuming k1=k3 above: 

ψ k1 (1) ψ k )
ψ k1 (2

2
(1) ψ k

) ψ k2 (2
1

(1)  ψ k

)
N

(1
ψ

1 k (2)  ψ k (2)
Ψ(1,2,3,...N ) = ψ k1 (3 (3

1

) ( )
N

ψ ) ψ 3  ψ (3)
N! k2 k1 kN  

    

  ψ k1 (N ) ψ k2 (N ) ψ k1 (N )  ψ kN (N )
ψ k (1) ψ k (1) ψ k (1)  ψ k (1

1 2 1 N
)

ψ k (2) ψ k (2) ψ k (2  ψ k 2
1 2 1 N

Interchange 
) ( )

⎯C⎯olum⎯ns 1⎯&3 1⎯→− ψ
N ! k 3

1
( ) ψ k (32

) ψ k 3
1
( )  ψ k 3

N
( ) = −Ψ(1,2,3...N )

    
ψ k (N ) ψ k (N ) ψ k (N )  ψ

1 2 1 k (N
N

)  

The only way a number can be equal to its opposite is if it is zero.  The same 
result holds if we choose any two of the orbitals ki and kj. Thus, in enforcing 
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antisymmetry the determinant also enforces the Pauli exclusion principle.  Thus, 
Slater determinants immediately lead us to the aufbau principle we learned in 
Freshman chemistry: because we cannot place two electrons in orbitals with the 
same quantum numbers, we are forced to fill up orbitals with successively higher 
energies as we add more electrons: 1s↑, 1s↓, 2s↑, 2s↓, ….  This filling up is 
dictated by the fact that the wavefunction is antisymmetric, which, in turn, 
results from the fact that the electron is spin-½.  As it turns out, all half-integer 
spin particles (Fermions) have antisymmetric wavefunctions and all integer spin 
particles (Bosons) have symmetric wavefunctions. Imagine how different life 
would be if electrons were Bosons instead of Fermions! 

• Ψ is normalized if the orbitals ψ ki
are orthonormal and two determinants are 

orthogonal if they differ in any single orbital.  These two facts are relatively 
tedious to prove, but are useful in practice. 

• The non-interacting energy of a Slater determinant is the energy of the 
orbitals that make it up. Just as was the case for helium, our antisymmetric 
wavefunction is a linear combination of degenerate non-interacting eigenstates: 

( 1Ψ 1,2,...,N ) = (ψ k (1)ψ k (2)ψ k (3)ψ k (N ) −ψ k (2)ψ k (1)ψ k (3)ψ
N ! 1 2 3 N 1 2 3 k N

N
( )

+ψ k (3)ψ k (1 ψ1 2
) k 23

( )ψ k N
N
( ) −ψ k 1 ψ 3 ψ 2 ψ N ...)

1
( ) k2

( ) k3
( ) kN

( )
 

Thus the determinant itself is an eigenstate of the non-interacting Hamiltonian 
with the same eigenvalue as each state in the sum: 

EΨ = Ek + Ek + Ek + ...+ E  
1 2 3 kN

We have only completed half of the independent particle picture at this point.  We 
have the noninteracting energy; what remains is the computation of the average 
energy.  To compute this, we would need to do a 2N-dimensional integral involving a 
Slater Determinant on the left, the Hamiltonian in the middle (including all interaction 
terms) and a Slater Determinant on the right.  The book-keeping is quite tedious, but 
can be worked out in the most general case.  The result is that the energy breaks 
down into terms that we already recognize: 



5.61 Physical Chemistry  Lecture #23     page 5 
 

Noninteracting Average Repulsion 
Energy 

H ˆ ∑
N

= Ei + ∑
N

J ˜ ij − K ˜ 
ij

i =1 i < j
           

∫∫
1Jij ≡ ψ *

k (1)ψ *
k (2) ψ k (1)ψ k (2)dr d

j 1 dr dσ
i j r i 2 σ1 2

12
 

K ij ≡ ∫∫ψ *
k 1 ψ k 2 dr r dσ dσ
i
( )ψ *

k 2) d
j
( 1 1 ψ
r j

( ) ki
( ) 1 2 1 2

12  
 
 

This energy expression has a nice intuitive feel to it: we get contributions from the 
interaction of each electron orbital with the nucleus (first term) as well as from the 
mutual repulsion of each pair of orbitals (second term).  The repulsion has the 
characteristic “Coulomb minus Exchange” form because of the antisymmetry of the 
Slater determinant, which leads to a minus sign every time we exchange 1 and 2.  For 
example, when we expand the determinant in terms of product functions, we will have 
a term like: 

X ≡ψ k (1)ψ k (2)ψ k (?)ψ
1 2 3 k ?

N
( )  

we will have a corresponding term with 1↔2 with a minus sign: 
Y ≡ψ k 21

( )ψ k (1)ψ k
 

3
(?)ψ k ?

2 N
( )

When we compute the average repulsion we will have: 
1 1 ≈ −∫∫ (X Y ...) (X Y− ...)dr rd ...
r r 1 2  
12 12

The +XX and +YY terms will give us Coulomb integrals and the cross terms -XY and      
-YX will give us exchange integrals.  We note that, as defined, the Coulomb and 
Exchange terms are both positive, so that the exchange integral always reduces the 
repulsion energy for a Slater determinant.  These arguments do not constitute a proof 
of the energy expression above – they are merely intended to give you a general 
feeling that this expression is plausible.  Deriving the average energy actually takes 
quite a bit of time and careful bookkeeping of different permutations (e.g. 1↔2↔4 
versus 4↔2↔3 …).  If you want to delve deeper into these kinds of things, we 
recommend you take 5.73, which covers much of the material here in greater depth. 
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In any case, most of the time we need not worry about the details of how the average 
energy expression is derived for a general determinant.  Usually what we want to do is 
use the formula to compute something interesting rather than re-derive it. Toward 
this end we note that the Coulomb and exchange integrals above involve integration 
over spin variables, which we can be done trivially.  Basically, the integration over σ1 
(σ2) will give unity if the left and right functions for electron 1 (electron 2) have the 
same spin, and zero otherwise.  For the Coulomb integral, the left and right functions 
are the same, so the spin integration always gives 1 and we can get rid of the spin 
integration : 

Jij = ∫∫ψ *
i (1)s*i (σ1)ψ * (2)s*j (σ 2 ) 1j ψ

r i (1)si (σ1)ψ j (2)s j (σ 2 )dr1 dr2 dσ1 dσ 2
12

= ∫ s*i (σ1) 1s*j (σ 2 )si (σ1)s j (σ 2 )dσ1 dσ 2 ∫ψ *
i (1)ψ *

j (2) ψ
r i (1)ψ j (2)dr1 dr2
12  

1 

= ∫ψ *
i ( 11)ψ *

j (2) ψ i (1)ψ 2
r j ( )dr1 dr2 ≡ Jij
12

where here we use the shorthand i n≡ { i i, ,m li} to represent all the spatial quantum 
numbers for the ith orbital, and similarly for the jth one.  For the exchange integrals, 
the left and right functions are different, and so the exchange integral is only 
nonzero if the ith orbital and the jth orbital have the same spin part: 
 

K ij = ∫∫ψ *
i (1)s* * * 1

i (σ1)ψ j (2)s j (σ 2 ) ψ i (2)si (σ 2 )ψ j (1)s j (σ1)dr1 dr2 dσ1 dσr 2
12

= ∫ s*
i (σ1)s*

j (σ 2 )si (σ 2 ) 1s (σ ∫ψ *
j 1)dσ1 dσ 2 i (1)ψ *

j (2) ψ i (2)ψ j (1)dr1 drr 2
12

1 if si =sj   
0 if si ≠sj 

⎧
⎪ ∫ψ *

i (1)ψ *
j (2) 1 ψ 2 ψ 1 dr dr ≡ K  if s =s

= ⎨ r ( ) j ( ) i ji 1 2 ij
12

⎪ if si ≠ s j
⎩ 0

In practice (for example on a Problem Set) it is useful to begin with the general 
expression for the independent particle energy and then integrate out the spin part 
to get a final expression that only involves the spatial integrals J and K rather than 
the space-spin integrals J  and K .  For example, say we are interested in the 
1s↑1s↓2s↑ configuration of lithium.  The energy is given by 
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N N
Ĥ = ∑ E + ∑ J − K

i ij iji =1 i < j

= E + E + E + J − K + J − K + J − K  
1s 1s 2s 1sα ;1sβ 1sα ;1sβ 1sα ;2sα 1sα ;2sα 1sβ;2sα 1sβ;2sα

= 2E + E + J + 2J − K
1s 2s 1s1s 1s2s 1s2s

Thus, in going from space-spin integrations to space integrations, we acquire a few 
factors of 2, but the formula still looks similar to the expressions we’ve seen before. 
 
The independent particle energy expression is extremely powerful: it allows us to 
make rough predictions of things like atomic ionization energies and excitation 
energies once we have the Coulomb and exchange integrals.  The independent particle 
energy also gives us a rigorous explanation of another freshman chemistry effect: 
shielding.  As we know, while 2s and 2p are degenerate for the hydrogen atom they 
are not degenerate as far as the order of filling up orbitals.  2s comes first and 2p 
comes second.  As you know, physically this arises because the 2s orbital sees an 
effective nuclear charge that is bigger than 2p because it is shielded less by the 1s 
orbital.  It turns out that the IPM has a simple means of explaining this result.  If we 
look at the 1s↑1s↓2px↑ configuration of lithium and go through exactly the same 
manipulations as we did above for 1s↑1s↓2s↑ we get: 

Ĥ = 2E + E + J + 2J − K  
1s 2px 1s1s 1s2px 1s2px

taking the difference between 1s↑1s↓2px↑ and 1s↑1s↓2s↑ gives: 
ΔE E=

1 2s p2 2− E
1 2s s

= 2 2E + E + J + J − K −1 2s p 1 1 2 1 2

(
x x1s s s p s px

2 2E E+ + J + J − K1 2s s 1s1s 1s2s 1s2s )  

= 2 2J J− + K − K ≠ 01 2s px x1 2s s 1 2s s 1 2s p
 

Thus, while 1s↑1s↓2px↑ and 1s↑1s↓2s↑ give the same energies if the electrons do not 
interact, they give different energies once we include the average interaction.  
Further, it is clear from the above expression that the relevant interactions are 
between the 1s and 2p orbitals on the one hand and the 1s and 2s orbitals on the 
other.  Using our physical argument of shielding, we assert that the 1s and 2s orbitals 
will repel each other less than the 1s and 2p orbitals, leading to a net stabilization of 
1s↑1s↓2s↑ relative to 1s↑1s↓2px↑.  We explore this idea in more detail on the problem 
set. 
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While there are many things we can predict using the IPM – for example, we can show 
that the ionization potential of fluorine is greater than that of oxygen, in line with 
what we learned in general chemistry – this model is not perfect.  McQuarrie goes to 
great lengths to show that one can improve the IPM by using the hydrogenic orbitals 
with Zeff<Z.  That is to say, one gets better answers if one uses valence orbitals that 
have been partly “shielded” by the inner core.  This gives better answers, but even 
this model is not always accurate.  The most important role that the IPM plays in 
chemistry is not its ability to give us good numbers but the fact that it gives us a 
simple framework to start talking about the electronic structure of complex 
molecules.  We just have to recognize that there will still need to be some corrections 
(or perhaps fudge factors) applied to the IPM if we want numerically accurate 
answers. 
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