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Lectures #14 & #15:  Non-Degenerate Perturbation Theory I 
Last time: finished with Harmonic Oscillator 

Foundation for our picture of intra-molecular nuclear motions in all molecules. 

Emphasis was on creating a non-stationary initial state (“wavepacket”), composed as a linear 
combination of Harmonic Oscillator eigenstates 

Ψ ( x,t = 0) = ∑
∞ 

cvψ (x),v 
v=0 

and using the time-evolution of this wavepacket to illustrate some of the most fundamental 
dynamical processes: 

*	 dephasing and rephasing 
*	 Newton’s laws for motion of “center” of wavepacket 
*	 tunneling through a barrier (to deal with this we had to wave our arms to describe the 

effect of the barrier on the non-Harmonic Oscillator pattern of energy eigenstates) 

This is one of the things that perturbation theory will enable us to do.ngs 

Today: We have covered two exactly solved model systems: 

particle in box 
harmonic oscillator 

and will soon cover two more: 

rigid rotor 
Hydrogen atom 

These are much more than beads on a lovely necklace. 

How do we use these exactly solved models to gain an understanding of molecular structure and 
dynamics? How are the quantities we want to know in order to form an intuitive physical picture 
of the molecule related to what we can measure in a do-able experiment. 


Spectroscopy! Everything we might want to know about a molecule is encoded in the spectrum. 

For example, we never directly measure a bond length or a force constant. 


Perturbation Theory tells us how the quantity we are interested in expresses itself in a do-able 

experiment. 


Perturbation Theory: 
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ugly but useful 
gives us energy level formulas 
defines molecular constants 
conversion of directly calculable R-dependent quantities into directly measureable 

quantum number dependent quantities 

E(quantum numbers ) = ∑(molecular constants)(quantum numbers) 


One example: 

Evib (v1,v2 ) = hc ⎣⎡ω1 (v1 + 1/ 2  ) + ω 2 (v2 + 1/ 2  ) 
+ x11 (v1 + 1/ 2  )2 + x22 (v2 + 1/ 2  )2 + x12 (v1 + 1/ 2  ) (v2 + 1/ 2  )⎦⎤

v1, v2 are quantum numbers 

ω1, ω2, x11, x12, x22 are molecular constants [How are these vibrational molecular constants 
related to the atomic masses and the potential energy function, V(R1, R2, R12)?] 

Another example: the Stark Effect. How does an external electric field interact with the electric 
dipole moment of a molecule to shift and split the rotational energy levels of a diatomic 
molecule? 

2E ( J, M J ;ε ) = hc ⎡⎣BvJ(J + 1) + ( με ) f (J, M J )⎤⎦ 

where μ is the electric dipole moment (what we want to know), ε is the electric 
field, and f(J,MJ) is a complicated algebraic function expressed in terms of Bv, J, 
MJ, which you will derive using perturbation theory. 

Formal derivation of perturbation theory 

Hψ = Eψ
 

H = H(0 )  + λH(1) + λ2 H(2 ) 
  

AHHH I 
usually we 
ignore this 

(0 )  + λE(1) + λ2E(2 )  E = En n n n 

(0 )  + λψ (1) + λ2ψ (2 )  
n n n nψ = ψ

A HHHI
 
usually we 
ignore this 
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H(2) is ignored because we decide to put all bad stuff into H(1). This is a choice dictated by 
convenience. 

ψ (2  )  is ignored because we observe energy levels, not wavefunctions, and it will be clear thatn 

energy terms calculated using ψ (2  )  will be very small.n 

λ is an “order-sorting” or “smallness” parameter that guides us through the derivation. 

(MOSTLY) NON-LECTURE: Derivation of Perturbation Theory Formulas 

(0 )  + λψ (1) + λ2 ψ (2 )  H(0 )  + λH(1) + λ2H(2 )  [ ] ⎡⎣ψ n n n ⎤⎦ 
(0 )  + λE(1) + λ2E(2 )  (0 )  + λψ (1) + λ2ψ (2 )  = ⎡E ⎤ ⎡ ⎤⎣ n n n ⎦ ⎣ψ n n n ⎦ 

arrange the terms into three separate equations according to the power of λ. We want to find 
algebraic formulas, the form of which does not depend on λ. 

λ0 equation: 

H(0 )ψ (0 )  (0 )ψ (0 ) 
  = En n n 
(0 ) { (0 )  Evidently {ψ i }  are eigenfunctions of H(0) that belong to eigenvalues Ei } . 

(0 )  The {ψ i }  are a “complete basis set” that provides the algebraic and interpretive framework for 

everything. They are called “basis states” or “zero-order states.” H(0) is the Hamiltonian for one 
of four favorite exactly-solved problems. 

λ1 equation: 

H(0 )ψ (1) + H(1)ψ (0 )  (0 )ψ (1) + E(1)ψ (0 )  = En n n n n n 
(0 )*multiply on the left by ψ n and integrate 

(0  )*H(0 )ψ (0 )*H(1)ψ (0  )dτ = E(0 )  ∫ ψ (0 )*ψ (1)dτ + E(1) ∫ ψ (0 )*ψ (0 )dτ .∫ ψ (1)dτ + ∫ ψn n n n n n n n n n 
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(0 ) (0 )  Simplifications result because ψ n is an eigenfunction of H(0) that belongs to eigenvalue En 

(0 )  and the basis set, {ψ i } , is both complete and orthonormal. Term by term we have 

(0 )  ∫ ψ (0  )*ψ (1)dτ + H(1) (0 )  ∫ ψ (0  )*ψ (1)dτ + E(1) E = E .
n n n nn n n n n 

(0 )  ∫ ψ (0 )ψThe E (1)dτ  term appears on both LHS and RHS. It is NOT assumed here to be zero.n n n 

Cancel it. We are left with 

(1) (1) H = Enn n . 

(0 )This equation means that the expectation value of H(1) with respect to ψ n is the first-order 
(1) correction to the energy, En : 

(0  )*H(1)ψ (0  )dτ =  H(1) (1) ≡ ∫ ψEn n n nn
 . 
(0 )*Next, multiply the original equation on the left by ψ m where m ≠ n and integrate. 

(0  )*H(0 )ψ (0  )*H(1)ψ (0  )dτ =  E(0 )  ∫ ψ (0  )*ψ (1)dτ + E(1) ∫ ψ (0  )*ψ (0 )dτ∫ ψ (1)dτ + ∫ ψm n m n n m n n m n 

(0 )  ∫ ψ (0 )*ψ (1)dτ + H(1) (0 )  ∫ ψ (0  )*ψ (1)dτ + 0Em m n mn = En m n 

(0 )  − E(0 )  (0 )*ψ (1) (E ) ∫ ψ (1)dτ = −Hm n m n mn 

(1)
 
(0 )*ψ (1)dτ =  Hmn
∫ ψ .m n (0 )  − E(0 ) 
  En m
 

(0 )  (1) (0 )  Exploit completeness of {ψ i }  to expand unknown ψ n in terms of known {ψ i } : 

(1) (0 )  ψ n = ∑ am ψ m (m ≠ n because otherwise the RHS of the boxed equation 
m≠n 

above would blow up). 

(0 )*To evaluate the {am} we multiply on the left by ψ m and integrate, and then insert the result into 
the boxed equation above: 
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(1) 
(0 )*  (0 )dτ Hmn∫ ψ ∑ a ψ = a = m	 m m m (0 )  − E(0 )  . Em≠n	 n m 

This is a really useful result because now we have a simple expression for each of the ψ (1)  inn 

(0 ) 	  (0) terms of the {ψ i }  and the {Ei } : 

H(1) 
(1)	 (0 )  mn
ψ	 = ψn	 ∑ m (0 )  − E(0 )  

m≠n En m . 

It would be the ultimate in masochism for you to follow the derivation beyond this point! 

λ2 equation: 

H(0 )ψ (2 )  + H(1)ψ (1) + H(2 )ψ (0 )  (0 )ψ (2 )  + E(1)ψ (1) + E(2 )ψ (0 )  = En	 n n n n n n n n 

(0 ) 	 (1) (1) Multiply on left by ψ  and integrate, then use what we already know about ψ  and E .n	 n n 

(1)H jn 
(1) 

(0 )  ∫ ψ (0  )*ψ (2  )dτ +  
Hnj (0 )*H(2 )ψ (0  )dτEn n n ∑ (0 )  + ∫ ψ n n(0 )  − E jE
j≠n n 

(0 )  ∫ ψ (0  )*ψ (2  )dτ + E(2 )  = En n n n 

(0 )  ∫ ψ (0 )*ψThe En	 nn 
(2 )dτ  term is repeated on LHS and RHS, cancel it. 

(1)H jn 
(1) 

(2 )  Hnj	 (2 )  E =	 (0 )  + Hn ∑ (0 )  − E j 
nnEj≠n n 
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(0 )*Now multiply original equation on left by ψ m (m ≠ n) and integrate: 

(0  )*H(0 )ψ	 (0  )*H(1)ψ (0  )*H(2 )ψ (0  )dτ∫ ψ 	 (2  )dτ +  ∫ ψ (1)dτ +  ∫ ψm n m n m n 

(0 )  ∫ ψ (0  )*ψ (2  )dτ + E(1) ∫ ψ (0  )*ψ (1)dτ + E(2 )  ∫ ψ (0  )*ψ (0  )dτ= En m n n m n n m n 

Evaluate the second term on the LHS 

⎡ (1) ⎤ (1)H jn 
(1) 

(0 )*H(1)ψ (0 )*H(1) (0 )  H jn Hmj∫ ψ (1)dτ =  ∫ ψ m ⎢∑ ψ j (0 )  ⎥ dτ =  (0 )  − E j 
m n (0 )  − E j 

∑ (0 )  
⎢ j≠n En ⎥ j En⎣	 ⎦ 

Evaluate the second term on the RHS 
(1) 

(1) ∫ ψ (0 )*ψ (1)dτ =  E(1) HmnEn m n n (0 )  − E(0)  .
 En m
 

Combine the first term on the LHS with the first term on the RHS to get 
(0) − E (0) (0)ψ (2)dτ .(E ) ∫ ψ nm n m 

Putting it all together: 

(1)H jn 
(1)	 (1) H(0 )  − E(0 )  (0 )ψ (2  )dτ +  

Hmj (2 )  − E(1) mn(Em n ) ∫ ψ n ∑ (0 )  + Hmn n (0 )  − E(0 )  = 0m E(0 )  − E j	 Ej n	 n m 

(1)	 (1) 
(0 )*ψ (2  )dτ =  1 Hmj Hmn En mn∫ ψ m n (0 )  − E(0 )  (0 )  − E j 

+ (0 )  − E(0 )  + 
(0 )  − E(0 )  2 = 0 

(1)H jn 
(2 )  (1)H∑ (0 )  (Em n ) j Em Em n (E )n m 

(2) Use completeness to evaluate ψ n : 

(2 )  (1)H(1)	 (1) ⎧	 (1)H jn ⎫ 
(2 )  (0 )  ⎪ Hmn En mn	 

Hmj ⎪ 
(0 )  − E j 

. ψ n = ∑ ψ m	 ⎨− (0 )  − E(0 )  + 2 − ∑ (0 )  − E(0 )  (0 )  ⎬
⎪ n m m ⎪m≠n

En m (E(0 )  − E(0 )  ) j≠m (E )(Em )n⎩	 ⎭

But we will NEVER use H(2) or ψ(2) in standard problems. WHY? 

END OF NON-LECTURE 
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Detailed worked example of Non-Degenerate Perturbation Theory 

Suppose we have an anharmonic interaction between two vibrational normal modes. The two 
most important anharmonic interaction mechanisms are: 

* Cubic 

1 
k122Q1Q

2
2 and 

1 
k112Q1

2Q22 2 

* Quartic 

1 2
 

4 
k1122Q1

2Q2 . 


These inter-mode anharmonic interactions contribute to terms in the vibrational energy level 
expression (structure) and to the flow of excitation from one normal mode to another 
(dynamics). This dynamical effect is called Intramolecular Vibrational Redistribution (IVR). 

The standard formulas of Perturbation Theory: 

H = H(0) + H(1) 

2 

(0 )  + H(1) +E = En n nn ∑ (0  )  

H

−
nm

E(0)  Em≠n n m 

(1) 
(0 )  + (0 )  Hmnψ = ψ ψn n ∑ m (0 )  − E(0)  . Em≠n n m 

For vibrations it is convenient to express everything in terms of creation and annihilation 
operators. We are using the essential tool for harmonic oscillators to describe anharmonic 
oscillators. 
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1/2 1/2
⎡ t ⎤ 

QQ ⎡ t ⎤
Q = = ( )
⎢ ⎥ ⎢ ⎥ a + a† 

2πcμω 4πcμω⎣ ⎦ ⎣ ⎦
1/2 

PP 1/2
P = [2πtcμω ] = i[πtcμω ] (a† − a) 

1 ⎡ k ⎤
1/2 

following standard spectroscopicω =  notation ω is now in cm–1 units rather 

2πc ⎢ μ ⎥ than rad/sec⎣ ⎦
Recall 

1/2 ψ†ψa v = (v + 1) v+1 

1/2ψaψ v = v v−1 

 ψ  ψ v v 

number aa† = a†a + [a, a†] = a†a + 1
 
operator 


a

n

†a v =
r

N = vψ

H(0 )  1 
P2 + k 

Q2= 
2 μ  2
 

1
= −  [πtcμω ](a†2 + a2 − a†a − aa† )
2 μ  

†2 + a † †+ k t ( 2 + a a + aa ). 
2 4πcμω a

P 2 Q 2 
Simplify the coefficients in front of the P and Q terms 
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1 (π hcμω ) = hc ω (t = h / 2π )

2 μ 4
 

k h ⎛ 1 k ⎞ π hc hc
 = = ω⎜ 2 ⎟2 4π cμω ⎝ 4π 2c μ⎠ 2 ω 4
AHHHHHHI 

ω 2 

hcω
H(0 )  †2 − a †2 + a † †= 

4 
[−a 2 + a 2 + 2a a + 2aa ] 

(note the cancelation of the a2 and a†2 terms) 

= hcω [2N + 1]
2 

H(0) |v〉 = hcω (v + ½) as expected. 

Now we want to use this formalism to describe the energy levels and dynamics of two 
anharmonically coupled harmonic oscillators. 

H(0) (0) + H2 = H1 
(0) 

(0) = 0
 
v1v2
 

0 
two non-interacting harmonic oscillators v1 v2 

E (0) (v1, v2 ) = ω1
(0) (v1 + 1/  2)  + ω 2

(0) (v2 + 1/ 2) this is the "zero-order" energy level formula 
hc 

Introduce cubic and quartic coupling terms: 

H(1) 1 1 1 22 += k112Q1
2Q2 + k122Q1Q2 k1122Q1

2Q2 . 
2 2 4 

The empirical spectroscopic fitting equation is 

E(v1,v2 ) 2= ω1 (v1 + 1/ 2  ) + ω 2 (v2 + 1/ 2  ) + ωx11 (v1 + 1/ 2  )
hc 

+ωx22 (v2 + 1/ 2  )2 + ωx12 (v1 + 1/ 2  )(v2 + 1/ 2  ). 
Our goal is to express the experimentally measureable fit parameters 

{ω1, ω2, x11, x22, x12} 
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(0 )  (0 )  in terms of the computed microscopic parameters {ω1 ,ω 2 ,k112 ,k122, k1122 }  [each of which is 

related to a derivative of the V(ΔR1, ΔR2) potential energy function, computed at equilibrium 
geometry (ΔR1 = 0, ΔR2 = 0)]. 

To do this we have to write H(1) in terms of a1,a1
† ,N1,a2 ,a†

2 ,N2  and then apply non-degenerate 
perturbation theory. To minimize the ugliness, it is best to organize all of the ensuing algebra 
according to the selection rules of the various operators. 

H(1) 1	 1 1 2= k112Q1
2Q2 + k122Q1Q

2
2 + k1122Q1

2Q22	 2 4 
†2 †2 2 2	 †= A ⎡⎣a1 a†

2 + a1 a2 + a1 a
†
2 + a1 a2 + ( 2N1 + 1) a2 + ( 2N1 + 1) a2 ⎤⎦ 

† †2 + a1
† †2 + a1a2

†+ B ⎡⎣a1a2 a2
2 + a1a2

2 + ( 2N2 + 1) a1 + ( 2N2 + 1) a1 ⎤⎦ 
†2 †2	 + a1

†2 2 †2 + a1
2 2+C ⎡⎣a1 a2 a2

2 + a1 a2 a2 

†2 +	 2+ ( 2N1 + 1) ( 2N2 + 1) + ( 2N1 + 1) a2 (2N1 + 1) a2 

†2	 2+ a1 ( 2N2 + 1) + a1 ( 2N2 + 1) ⎤⎦ 

A fair amount of simplifying algebra has been done, employing [a,a†] = 1 has been done, to 
combine terms 

aa† + a†a = (2N + 1). 

All of the terms in H(1) are sorted according to their Δv1, Δv2 Selection Rule. The constants {A, 
B, C} are related, respectively, to k112, k122, and k1122. 

Following is an explicitly worked out, step-by-step example of the application of non-degenerate 
perturbation theory to a standard problem: 

1.	 Express H in terms of a, a†, and N. 

•	 H(0) gives the zero-order energies that will appear in “energy denominators” 
•	 H(1) contains all of the interaction terms. They contribute to both off-diagonal and 

diagonal terms in H. 

2.	 Organize all of the integrals of H(1) and the energy denominators from H(0) 

according to the selection rule. 
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3.	 Algebraically combine all of the terms that involve the same family of selection 
rules. A “family” consists of all combinations with the same |Δv1|, |Δv2|. 

4.	 Simplify the algebraically horrible results into sums over integer powers of the 
quantum numbers, e.g. (v1 + ½)n(v2 + ½)m. 

5.	 Harvest the contributions to {ωi, xij} from the coefficients of (v1 + ½)n(v2 + ½)m, 
e.g. n = m = 1 → x12. 

6.	 Spend the rest of your life checking the algebra. 

NON-LECTURE 


Δv1 = 0, Δv2 = 0 
(Δv1, Δv2) 

(0,0) C(2N + 1)(2N + 1)v1 v2 

H(1) = 4C(v1 + 1/ 2  )(v2 + 1/ 2  )
 ΔE(0) = 0 

v1v2 v1v2 

Δv1 = 0, Δv2 = ±1 

(0,–1) A(2Nv1 
+ 1 a2)( )  

H(1) v1v2 + 1 = 2A(v1 + 1/ 2  )(v2 + 1)1/2

 ΔE(0)/hc = –ω2 

v1v2 

†(0,+1) A 2Nv1 
+ 1)( )( a2 

H(1) v1v2 − 1 = 2A(v1 + 1/ 2  ) v2

1/2( )v1v2 

ΔE(0)/hc = +ω2 

Δv1 = ±1, Δv2 = 0 

(–1,0) B a1 (2N + 1( ) v2 ) 
H(1) = 2B(v1 + 1)1/2 (v2 + 1/ 2  )

 ΔE(0)/hc = –ω1 

v1 + 1,v2v1v2 

†(+1,0) B a1
2N 1)( )( v2 

+

H(1) ( ) 1/ 2  )
 ΔE(0)/hc = +ω1 

v1 − 1,v2 = 2B v1

1/2 (v2 +v1v2 
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Δv1 = ±2, Δv2 = ±1 

(–2,–1) 2 ( )A( )a1 a2

H(1) v1 + 2,v2 + 1 = A ⎡⎣(v1 + 1)(v1 + 2)(v2 + 1)⎤⎦ 
1/2 

ΔE(0)/hc = –2ω1 – ω2 

v1v2 

(+2,–1) A a1
†2 a2(  )( )  
H(1) v1 − 2,v2 + 1 = ⎡ v1 v1 − 1)(v2 +

ΔE(0)/hc = 2ω1 – ω2 

A ⎣( )( 1)⎤⎦ 
1/2 

v1v2 

(–2,+1) A a1
2 a†

2( )( )  
H(1) v1 + 2,v2 − 1 = A ⎡ + 2 + 1 v2 ⎤

1/2 

⎣(v1 )(v1 )( )⎦ 
ΔE(0)/hc = –2ω1 + ω2 

v1v2 

(+2,+1) A a1
†2 a†

2(  )( )  
H(1) v1 − 2,v2 − 1 = ⎣ v1 v1 − 1)( )⎤⎦ 

1/2 
A ⎡( )( v2

ΔE(0)/hc = 2ω1 + ω2 

v1v2 

Δv1 = ±1, Δv2 = ±2 

(–2,–1) B a1 a2
2( )( )  

H(1) = B⎣⎡(v1 + 1)(v2 + 2)(v2 + 1)⎦⎤
1/2 

ΔE(0)/hc = –ω1 – 2ω2 

v1 + 1,v2 + 2v1v2 

†2(–1,+2) B a1 ( )  ( ) a2 

H(1) = B⎣(v1 + 1) v2 (v2 − 1)⎤⎦ 
1/2 

v1 + 1,v2 − 2 ⎡ ( )v1v2 

ΔE(0)/hc = –ω1 + 2ω2 

(+1,–2) B a1
† a2

2( )( )  
H(1) v1 − 1,v2 + 2 = B⎡⎣( )( + 2)(v2 + 1)⎤⎦ 

1/2 
v1 v2 

ΔE(0)/hc = ω1 – 2ω2 

v1v2 

† †2(+1,+2) B a1 a2( )(  )  
H(1) v1 v2 1 ⎤

1/2 
v1 − 1,v2 − 2 = B⎡⎣( )( )(v2 − )⎦ 

ΔE(0)/hc = ω1 + 2ω2 

v1v2 
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Δv1 = 0, Δv2 = ±2 

†2(0,+2) C(2N + a2v1 
1)(  )  

H(1) = 2C v1 + 1/ 2  ) ⎣ v2 v2 − 1)⎤⎦ 
1/2 

v1,v2 − 2 ( ⎡( )( 
ΔE(0)/hc = 2ω2

v1v2 

 
2(0,–2) C(2Nv1 

+ 1 a2)( )  
H(1) = 2C(v1 + 1/ 2  ) ⎡⎣(v2 + 2)(v2 + 1)⎤⎦ 

1/2 

ΔE(0)/hc = –2ω2

v1,v2 + 2v1v2 

 
Δv1 = ±2, Δv2 = 0 

†2(+2,0) C a1
2N 1)(  )( v2 

+

H(1) = 2C ⎡⎣( )( − 1 ⎦ 
1/2 

v2 + 1/ 2  )v1 − 2,v2 v1 v1 )⎤ ( 
ΔE(0)/hc = 2ω1 

v1v2 

2(–2,0) C a1
2N 1)( )( v2 

+

H(1) = 2C ⎡⎣(v1 + 2)(v1 + 1)⎤⎦ 
1/2 (v2 + 1/ 2  ) 

ΔE(0)/hc = –2ω1 

v1 + 2,v2v1v2 

Δv1 = ±2, Δv2 = ±2 

2 2(–2,–2) C a1 ( )( ) a2 

H(1) v1 + 2,v2 + 2 = C ⎡⎣(v1 + 2)(v1 + 1)(v2 + 2)(v2 + 1)⎤⎦ 
1/2 

ΔE(0)/hc = –2ω1 –2ω2

v1v2 

 
2 †2(–2,+2) C a1 a2( )(  )  

H(1) v1 2 v2 v2 1)⎤
ΔE(0)/hc = –2ω1 + 2ω2 

v1 + 2,v2 − 2 = C ⎡⎣( + )(v1 + 1)( )( − ⎦ 
1/2 

v1v2 

(+2,–2) C a1
†2 a2

2(  )( )  
H(1) v1 v1 1 + 1 ⎤

1/2 
v1 − 2,v2 + 2 = C ⎡⎣( )( − )(v2 2)(v2 + )⎦ 

ΔE(0)/hc = 2ω1 – 2ω2 

v1v2 
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†2 †2(+2,+2) C( )a1 a2( )  
H(1) = C ⎡ − 1 v2 v2 − 1 ⎤

1/2 
v1 − 2,v2 − 2 ⎣( )v1 (v1 )( )( )⎦ 

ΔE(0)/hc = 2ω1 + 2ω2 

v1v2 

These are all of the integrals and energy denominators that we will need. Now we need to input 
these results into the formulas of perturbation theory. 

(1) (1)For Ev1v2 
= Hv1v2 ,v1v2 

we want diagonal integrals of H(1). There is only one such non-zero term 

H(1) = 4C(v1 + 1/ 2  )(v2 + 1/ 2  )v1v2 v1v2 

(2 )For Ev1v2 
we need to evaluate many second-order perturbation summations 

H2
 
(2 )  v1v2 ,v1 ′v2 ′ E = ∑′ v1v2 (0 )  (0 )  

v1 ′v2 ′ E − Ev1v2 v1 ′v2 ′ 
It turns out to be algebraically most compact if we combine terms in the sum pairwise, where the 
energy denominators have the same magnitude but opposite sign. 

Δv1 = 0, Δv2 = ±1 

2 

(2 )  2 ⎡ v2 (v2 + 1) ⎤ ⎣⎡2A(v1 + 1/ 2  )⎦⎤Ev1v2 
= ⎣⎡2A(v1 + 1/ 2  )⎦⎤ ⎢ − ⎥ = −1( )

ω ω ω⎣ 2 2 ⎦ 2 

Δv1 = ±1, Δv2 = 0 

(2 )  ⎣⎡2B(v2 + 1/ 2  )⎦⎤
2 

E = −1( )v1v2 ω1 
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Δv1 = ±2, Δv2 = ±1 

(2 )  A2 

Ev1v2 
= ⎣⎡v1 (v1 − 1)v2 − (v1 + 1)(v1 + 2)(v2 + 1)⎦⎤2ω1 + ω 2 

+ A2 

⎡⎣v1 (v1 − 1)(v2 + 1) − (v1 + 2)(v1 + 1 ( )⎤⎦) v22ω1 − ω 2 

(2 )  ⎡ 2 3 ⎤E = −A2 

4 (v1 + 1/ 2  )(v2 + 1/ 2  ) + (v1 + 1/ 2  ) +v1v2 ⎢ ⎥2ω1 + ω 2 ⎣ 4 ⎦

⎡ 2 3 ⎤− A2 

− (v1 + 1/ 2  ) + 4 (v1 + 1/ 2  )(v2 + 1/ 2  ) −⎢ ⎥2ω1 − ω 2 ⎣ 4 ⎦
Δv2 = ±2, Δv1 = ±1 

(2 )  B2 

Ev1v2 
=

ω1 + 2ω 2 

[v2 (v2 − 1)v1 − (v2 + 1)(v2 + 2)(v2 + 1)] 

+ B2 

[v2 (v2 − 1)(v1 + 1) − (v2 + 2)(v2 + 1)v1 ]2ω 2 − ω1 

B2 

= −  ⎡⎣4(v1 + 1/  2)(v2 + 1/  2)  + (v2 + 1/  2)2 + 3 / 4  ⎤⎦ω1 + 2ω 2 

B2 

− ⎡⎣4(v1 + 1/  2)(v2 + 1/  2)  − (v2 + 1/  2)2 − 3 / 4  ⎤⎦2ω 2 − ω1 

Δv1 = 0, Δv2 = ±2 

(2 )  [2C(v1 + 1/  2)  ]2 

Ev1v2 
= [v2 (v2 − 1) − (v2 + 2)(v2 + 1)]

2ω 2 

C2 

= −  ⎡⎣16(v1 + 1/  2)2 (v2 + 1/  2)  ⎤⎦2ω 2 

Δv1 = ±2, Δv2 = 0 

C2
 

E(2 )  = −  ⎡16(v2 + 1/  2)2 (v1 + 1/  2)  ⎤
v1v2 ⎣ ⎦2ω1 
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Δv1 = ±2, Δv2 = ±2 

E(2 )  = ⎡ − 1 − 1 + 2 + 1 + 2 + 1 ⎤v1v2 

C2 

⎣v1 (v1 )v2 (v2 ) − (v1 )(v1 )(v2 )(v2 )⎦(2ω1 + 2ω 2 ) 

+ C2 

⎡v1 (v1 − 1)(v2 + 2)(v2 + 1) − (v1 + 2)(v1 + 1)v2 (v2 − 1)⎤(2ω1 − 2ω 2 ) ⎣ ⎦
 

−C2
2 2
= ⎡ (v1 + 1/ 2  ) (v2 + 1/ 2  ) + 4 (v1 + 1/ 2  )(v2 + 1/ 2  ) + 3(v1 + 1/ 2  ) + 3(v2 + 1/ 2  )⎤

(2ω1 + 2ω 2 ) ⎣4 ⎦
 

C2
 
2 2 2+ )

⎡⎣4 (v1 + 1/ 2  ) (v2 + 1/ 2  ) − 4 (v1 + 1/ 2  )(v2 + 1/ 2  ) − 2(v1 + 1/ 2  ) + 2(v2 + 1/  2)2 − (v1 + 1/ 2)  + (v2 + 1/ 2  )⎤⎦(2ω1 − 2ω 2 

Now we have completed all of the algebra needed to write out the contributions to each of the fit 
parameters. 

END of NON-LECTURE 

contribution to 
v-dependent factor molecular constant 

(vi + ½)1 ωi 

(vi + ½)2 xii 

(vi + ½)(vj + ½) xij 

(vi + ½)3 yiii 

(vi + ½)2(vj + ½) yiij 

C2 
(0 )  − 3C2 

ω1 = ω1 − 
2ω1 + 2ω 2 2ω1 − 2ω 2 

C2 
(0 )  − 3C2 

ω 2 = ω 2 + 
2ω1 + 2ω 2 2ω1 − 2ω 2 

A2 A24A2 2C2 

= − − + −x11 ω 2 2ω1 + ω 2 2ω1 − ω 2 2ω1 − 2ω 2 

B2 B24B2 2C2 

= − − + +x22 ω1 ω1 + 2ω 2 2ω 2 − ω1 2ω1 − 2ω 2 

4A2 4A2 4B2 4B2 

= +  4C − − − −x12 
from � 2ω1 + ω 2 2ω1 − ω 2 ω1 + 2ω 2 2ω 2 − ω1 
E(1 )  

16C2 4C2 4C2 

= − − +y112 2ω 2 2ω1 + 2ω 2 2ω1 − 2ω 2 

revised 10/7/13 1:04 PM 





 

 

 

 

 

 

 

 

 
  

 

 
 

 

 

 
 

 
 

 

 
 

5.61 Fall, 2013 Lectures #14 & 15 	 Page 17 

16C2 4C2 4C2 

= − − −y122 2ω1 2ω1 + 2ω 2 2ω1 − 2ω 2 

Note that there are 7 fit parameters (ω1, ω2, x11, x12, x22, y112, y122) but only 5 independent 
(0) (0) parameters (ω1 ,ω 2 , A, B,C )  in the effective Hamiltonian model. 

Inter-mode vibrational interactions: The “Small-Molecule” and “Large-Molecule” Limits 

You now know how to use perturbation theory to deal with anharmonic interactions between 
“zero-order” normal mode vibrational states. 

There are 3N–6 normal modes in an N-atom molecule. There are anharmonic interactions 
between the zero-order states. 


An example of small molecule limit behavior occurs in CO2. 


There is the famous 1:2 “Fermi Resonance” between one quantum of the symmetric stretch, ω1, 

and two quanta of the bending mode, ω2. 

ω1 ≈ 2ω2 

This means that 

Δ E (0 )  (0 )  (0 )  = E − E = hc(ω1 − 2ω 2 )v1 ,v2 ,v3 v1 −1,v2 +2,v3 

is so small that its magnitude is comparable to the cubic anharmonic interaction strength 

]1/2 
Hv1 ,v2 ,v3 ;v1 −1,v2 +2,v3 

∝ k122 [ v1 (v2 + 2)(v2 + 1) . (1) 

Thus we have “spectroscopic perturbations” where the level that is of predominant |v1,v2,v3〉 
character contains a significant admixture of |v1–1,v2+2,v3〉(0) 

(1) 
(0 )  (0 )  + 

Hv1 ,v2 ,v3 ;v1 −1,v2 +2,v3 v1 − 1,v2 + 2,v3 =v1,v2 ,v3 v1,v2 ,v3 .hc(ω1 − 2ω 2 ) 
Two things happen at a spectroscopic perturbation: 

1.	 The vibrational level we expect to see in the spectrum (based on vibrational transition 
propensity rules) is shifted from its expected position by 
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2(1) Hv1 ,v2 ,v3 ;v1 −1,v2 +2,v3δE = 
hc(ω1 − 2ω 2 ) . 

2.	 There is an “extra line” in the spectrum, which is a transition into the level that was 
not expected to appear in the spectrum (because it violates the vibrational propensity 
rules). This extra line has borrowed intensity 

2
⎡ H(1)	 ⎤ v1 ,v2 ,v3 ;v1 −1,v2 +2,v3I = extra Imain ⎢	 ⎥ .
⎣	 hc(ω1 − 2ω 2 ) ⎦ 

A lot more can be said about such perturbations, and in fact I have devoted most of my research 
career to the study and exploitation of such perturbations. 

In the large molecule limit there are many “dark states” near degenerate with the 
spectroscopically “bright state.” Each dark state borrows a small amount of the character of the 
bright state. The result is that the bright state character is distributed over a quasi-continuous 
manifold of dark states. Instead of a single sharp transition one sees an unresolvable manifold 
of many transitions that appears as a single broadened transition. 

The reciprocal of the width of this broadened transition is taken, via the time-energy uncertainty 
principle 

ΔEΔt > h 
Δt ≈ h/ΔE 

as the rate of intramolecular vibrational redistribution or the non-radiative lifetime of the zero-
order bright state. Dynamics is encoded in the eigen-energy spectrum! 
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