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Lecture #12: Looking Backward Before First Hour Exam

Postulates, in the same order as in McQuarrie.

I. W(r,1) is the state function: it tells us everything we are allowed to know

2. For every observable there corresponds a linear, Hermitian Quantum
Mechanical operator

3. Any single measurement of the property A only gives one of the eigenvalues
of A

4. Expectation values. The average over many measurements on a system that is
in a states that is completely specified by a specific ¥(x,).

5. TDSE

We will discuss these, and their consequences, in detail now.
Postulate 1.
The state of a Quantum Mechanical system is completely specified by Y(r )

* Y*"Wdxdydz is the probability that the particle lies within the volume element dxdydz
that is centered at

r=Xxi+yj+zk (i,j, and k are unit vectors)

* Y is “well behaved”
normalizable (in either of two senses: what are these two senses?)
square integrable [usually requires that lim y(x)— 0]
X—>teo

continuous p
single-valued Y and d—w
finite everywhere *

When do we get to break some of the rules about “well behaved”? (from non-physical but
illustrative problems)?

2

Iy
ox’

*A finite step in V(x) causes discontinuity in

A O-function (infinite sharp spike) and infinite step in V(x) cause a discontinuity in a—w
X

Nothing can cause a discontinuity in Y.
When V(x) = oo, y(x) =0. Always! [Why?]
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Postulate 2

For every observable quantity in Classical Mechanics there corresponds a linear, Hermitian
Operator in Quantum Mechanics.

linear means ;\(Cl\ul +6,y,)=c¢ ;l\pl +c, ;\wz . We have already discussed this.

Hermitian is a property that ensures that every observation results in a real/ number (not
imaginary, not complex)

A Hermitian operator satisfies
" Fagyax=]" g(A* pryax
A, = (Agf )* (useful short-hand notation)
where fand g are well-behaved functions.

This provides a very useful prescription for how to “operate to the left”.

Suppose we replace g by fto see how Hermiticity ensures that any measurement of an
observable quantity must be real.

|7 prAfdx=[" fA* f*dx from the definition of Hermitian
Aff = (Aff)*

The LHS is just <2)f , the expectation value of A in state f.

The RHS is just LHS*, which means

LHS = LHS*

thus <2)f is real.

Non-Lecture

A

Often, to construct a Hermitian operator from a non-Hermitian operator, A, we take

on-Hermitian *

A~

~ 1 ~
AQM = E(Anon—Hermilian + A *

non-Hermitian ) :

OR, when an operator C = AB 1is constructed out of non-commuting factors, e.g.
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A,B]#0.
AB+ BA)

~ 1
Then we might try Chuemitian = 5( AB+ BA) -

Angular Momentum

Classically
C;szxﬁ: X vy z
0+l ]+ 0k
o/ yJ T, k px py pz )
l.=yp,—zp, Does order matter?
y.p]=0Y)
by inspection (of what?)
[z.p,]=0

which is a good thing because the standard way for compensating for non-commutation,

rXp+pxXr=0
fails, so we would not be able to guarantee Hermiticity this way
End of Non-Lecture

Postulate 3

Each measurement of the observable quantity associated with A gives one of the eigenvalues
of A.

;mfn =a,y, the setof all eigenvalues, {an}, is called spectrum of A

Measurements:

a, Y

X //(vaz’\lfz

v ~__

etc.
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Measurement causes an arbitrary Y to “collapse” into one of the eigenstates of the
measurement operator.

Postulate 4

For a system in any state normalized to 1, y, the average value of A is <;§> = r v *;m!dﬂ: .
(dt means integrate over all coordinates).

We can combine postulates 3 and 4 to get some very useful results.

1. Completeness (with respect to each operator)
Y= ZCZW . expand y in a “complete basis set” of eigenfunctions,
(many choices of “basis sets”)

Most convenient to use all eigenstates of A {\U i},{ai}
We often use a complete set of eigenstates of A {\pf} as “basis states” for the operator B

even when the {\p;‘} are not eigenstates of B.

2. Orthogonality

If y;,y; belong to a; # a;, then fdx\pf\pj =0. Even when we have a degenerate eigenvalue,

where a; = a;, we can construct orthogonal functions. For example:

;\\p L =av,, ;\wz =a\V, , y,V, are normalized but not necessarily orthogonal.

NON-Lecture
Construct a pair of normalized and orthogonal functions starting from y, and ,.

Schmidt orthogonalization

s=] dxy |y, #0, the overlap integral
v, =N (v, +ay, ), constructed to be orthogonal to ,

[deyiy} = Nldey, (v, +ay,)
= N(S+a).

If we set a = —S, V', is orthogonal to y,. We must normalize y’,.
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1=Jdeys 'y} =INF [dx(y; = S"w) ) (v, - Sy,)
=|NF[1-2IsP +|s/ ]
N = I:l 3 |S|2 ]—1/2

v =[1-1sP T (v, - Sv,)

\’, is normalized to 1 and orthogonal to y,. This turns out to be a very useful trick.

“Complete orthonormal basis sets”

Next we want to compute the {c¢,} and the {P,}. P, is the probability that an experiment on Y
yields the i" eigenvalue.

V= z GV,
i
(v is any normalized state)

Left multiply and integrate by j (which is the complex conjugate of the eigenstate of A
that belongs to eigenvalue a;).

[deyiy =ldxy’ Y ey,

= chﬁﬁ

¢, = jdx\pj.\p (so we can compute all {c,})

What about
(4)= Zeai
fdw*;w:de[zc;\,,;}z[zcjwj}
I

Orthonormality kills all terms
in the sum over j except j = i.
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| dey * Ay = D lc." a,
thus ()= |cl.|2 a

P =

1

=[[dvyiy|

so the “mixing coefficients” in Y

V=2

become “fractional probabilities” in the results of repeated measurements of A.

= 2 Pa,
. 12
=[xy
What does the [ﬁj] commutator tell us about

* the possibility for simultaneous eigenfunctions
* 0,05 ?
AVYB *

I. If [ﬁj] =0, then all non-degenerate eigenfunctions of A are eigenfunctions of B
(see page 10).

2. If [ﬁj;]:const;to

> L J dxw \|1)2 >0 (and real)

2 2
A B \
note that 5c f?]: ih
this gives

h
G,0, ZE (see page 11)

NON-LECTURE

Suppose 2 operators commute
[A.B]=0
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~

Consider the set of wavefunctions {\;,} that are eigenfunctions of observable quantity A .

;\l|fi =a\, {a,} are real

0=laxy,[A,B]v, =ldxy;(AB-BA)V,

= Jdxy’, ABy, - [dxy’ BAy,

commutator is O

= aj J.dXWjE\Ifl —a,; deWﬁ}W;
= (aj —ai)dewj-g’%
0= (aj _ai)J.dxw]'E“lli

B
yi
ifa,2a,— B;=0 this implies that y; and ; are eigenfunctions of B that belong to
different eigenvalues of B
ifa,=a,—> B,;#0 This implies that we can construct mutually orthogonal

eigenfunctions of B from the set of degenerate eigenfunctions of
A.

All nondegenerate eigenfunctions of A are eigenfunctions of B and eigenfunctions of B

can be constructed out of degenerate eigenfunctions of A .

Some important topics:

0. Completeness.
1. For a Hermitian Operator, all non-degenerate eigenfunctions are orthogonal and the
non-degenerate ones can be made to be orthonormal.
2. Schmidt orthogonalization
Are eigenfunctions of A eigenfunctions of B if [ﬁj] =07
4. [,Z,fé] # (0 = uncertainty principle free of any thought experiments.
A ., 0
5. Why do we define p as — zha— ?
X
6. Express non-eigenstate as linear combination of eigenstates.
0. Completeness. Any arbitrary Y can be expressed as a linear combination of functions

that are members of a “complete basis set.”
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For a particle in box
2 1/2 nmn
a a

2
8ma

complete setn=1, 2, ... = What do we call these y, in a non-QM context?

V= zciWi’ ¢ = de‘lffllf

To obtain the set of {¢;}, left-multiply w by ¥, and integrate. Exploit orthonormality of the
basis set {\,}.

Fourier series: any arbitrary, well-behaved function, defined on a finite interval (0,a), can be
decomposed into orthonormal Fourier components.

. -
f)= 5% +2(an cos™ 4 p, sin@).

n=1 a a

For our usual y(0) = y(a) = 0 boundary conditions, all of the a, =0. We can use particle in
box functions {y,} to express any y where y(0) = y(a) = 0. Another kind of boundary
condition is periodic (e.g. particle on a ring) Y(x + a) = Y(x) where a is the circumference of

the ring. Then, for the O < x < a interval, we need both sine and cosine Fourier series.

1. Hermitian Operator

If A is Hermitian, all of the non-degenerate eigenstates of A are orthogonal and all of the
degenerate ones can be made orthogonal.

If .:1 is Hermitian
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a;P; a;y;

/

a; = a; because A
corresponds to a
classically
observable quantity

rearrange

(a;—a;)] dx \II_’j\If_jI =0

order of these
doesn't matter

either a; = a; (degenerate eigenvalue)
OR
when a; # a; , is orthogonal to ;.

Now, when y, and y; belong to a degenerate eigenvalue, they can be made to be orthogonal,
yet remain eigenfunctions of A .

(zov ][0

i i

for any linear combination of degenerate eigenfunctions.

Find the correct linear combination. Easy to get a computer to find these orthogonalized
functions.

Non-Lecture

2. Schmidt orthogonalization

We can construct a set of mutually orthogonal functions out of a set of non-orthogonal
degenerate eigenfunctions.
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Consider two-fold degenerate eigenvalue a, with non-orthogonal eigenfunctions, y,, and y,.

Construct a new pair of orthogonal eigenfunctions that belong to eigenvalue a, of A.

overlap S, , = J.\V;le
V=Y

W, = N[Wu - Sn,lz\Vu]
Check for orthogonality:

I:-[deT1W12 -, 1,12 IdeTlWH:I
[Sll,lz - Sll,lz] =0.

J-deﬁW;z =N
=N
Find normalization constant:
1= deWIZWb
jdx‘lﬁz“’n +|S11,12| jdx\l’n“’n
B _-[dxqjusn,lz“fn o Id)CSn,lz\Vn\Vu
2[ 2 2 2
=|NI _1 + |Sn,12| - |S11,12| - |S11,12| :|

=[N’ :1 - |S11,12|2:|

=INI’

N = |:1_ Su,12|2j|_1/2

Vi, = |:1 - |S11,12|2 :|_1/2 [le - S11,12\V11]

Now we have a complete set of orthonormal eigenfunctions of A. Extremely convenient and

useful.
End of Non-Lecture

3. Are eigenfunctions of A also eigenfunctions of B if [ﬁj] =07?

~

(y,) = 8w, =By,

thus By, is eigenfunction of A belonging to eigenvalue a;. If g; is non-degenerate,

~

By, = cvy, , thus vy, is also an eigenfunction of B.
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We can arrange for one set of functions {\,} to be simultaneously eigenfunctions of A and
B when [ﬁj] =0.
This is very convenient. For example: n,, n,, n, for 3D box and eigenvalues of J * and f

for rigid rotor. Another example: 1D box has non-degenerate eigenvalues. Thus every
eigenstate of H is an eigenstate of a symmetry operator that commutes with H .

4. [,Z,fé] # (0 = uncertainty principle free of any thought expt.

Suppose 2 operators do not commute

It is possible (we will not do it) to prove, for any Quantum Mechanical state y
2 2 1 ~ )2
GAGBZ—Z(de\I}*C\p) >0.

Consider a specific example:

o)
I
=)>
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(3.5, ] f(x)= &p.f - p.3f
- x(—ih)a%f— (—ih)a%(Xf)
= (=in)|xf" = f—xf']
= +ihf
(2.5, ]=+in1
U
unit

operator

so the above (unproved) theorem says

X Py =

] 2 2
G262 2_l[lhjdx\|1*\|!} :_(_l)h_
4 4

xp

00,62 +5 Heisenberg uncertainty principle

This is better than a thought experiment because it comes from the mathematical properties
of operators rather than being based on how good one’s imagination is in defining an
experiment to measure x and p, simultaneously.

Non-Lecture

5. Why do we define p as p= —ihai ?
X

Is the -i needed? Why not +i?
- % d
=—ih| dxy*—
(py=—in| " dxy v

which must be real, (p)=(p)*. Butis it?
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integrate by parts,
treat y* and y as
linearly independent
functions

' -  ¥d -
(p) = +ihj_mdx\y£\|f* = +(ih)[w {7 — ded—“’w *} =(p)

\ dx
took complex U

conjugate of the O

ion f
equation for <P> because y,y* must

g0 to zero at + oo

thus (p)=(p)*,iis neededinp .
i vs. —i 1s an arbitrary phase choice, supported by a physical argument.

Suppose we have

kx

y=¢
vy = —ih(ik)e™ = +hke™

we like to associate (p) with +7k rather than —7ik.

6. Suppose we have a non-eigenstate v for the particle in a box

for example,

Y(x) = Nil?(:l? — azgaz — a/22

poor man’s \/
o

Normalize this
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J:dx W*W:I:sz:dx )Cz(x—a)z(x—a/Z)2

1/2
find that N = (ﬁ) .
a

172
Now expand this function in the y, = (—) sin— basis set.
a a

find the c,

(o o]
V= Z W,
n=1
Left multiply by v, and integrate

Jary, w=2 ¢, ldey,y, =c,
el L

orthogonal

) 2 1/2 a . T
c, =(840)"a™?| = JO dxx(x—a)(x—a/2)sin ——

a odd with respect to a
0,a interval needs to be

oddon 0,a
too in order
to have an
even
integrand

thus c,, = 0 for all odd-m
m=2n-1 n=12,...

c,, # 0 find them
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1680)" (e 2 ) | 2nmx
2n :%J. dx(x3 _éaxz ‘|‘g X (S1n
a 0 2 2 a

2nTx

change variables y =
a

_ 16807 ey (L) ys_éa(if () (L2 iy
at Yo 2nm 2 \2nm 2 \ 2nm 2nm

steps skipped

6
¢,, =1680"" ———=0.9914 n”’
(2nm)

¢, = 1 as expected from general shape of y.

Now that we have {c,}, we can compute (E)= | dx y * I/L\I\V = 2 P E,
—

n=1 prob-

ability

_ 2
P =c,

n

(EY=Y, Ey e, =E Y. (2n)[09914n ]
n=1 n=1

— 4 (Is this a surprise for a
= 4E1 (0983)2 n = 4E1 function constructed to
resemble , where E, =
4E,7)

n=1

End of Non-Lecture
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