Lecture #11: Wavepacket Dynamics for Harmonic Os-
cillator and PIB

Last time: Time-Dependent Schrédinger Equation

. O
Ay — in—
ot

Express W in complete basis set of eigenfunctions of time—independent H

{Un(2), En}
U(x,t) = che’iEft/ﬁwj(x)

J

For 2-state U’s, we saw that

1. |U*(z,t) U(x,t)| moves only if U contains at least 2 different E;’s;
2. [dx¥*¥ =1 for all U(z,t). Conservation of probability.

3. (z), and (p), obey Newton’s laws. Motion of “center of wavepacket”. Ehrenfest’s

Theorem.

4. Survival probability P(t) = |[ dzW*(z,t) ¥ (z,t = 0)|2. How fast does W(x,t) move
away from its initial preparation W(x,0). Dephasing, partial recurrence, grand recur-

rence.

5. Recurrences occur when all AE;; are integer multiples of common factor.

TODAY: Some examples of wavepackets in a Harmonic Oscillator or PIB potential

well. Mostly pictorial.

We start with the initial condition, W(x,t = 0), which I call the “pluck”. It is quite
analogous to what musicians understand about a wave on a string that is tied down at both

ends.

U(z,0) = Z ¢,

J
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If we have a “complete set” of ¢;(x), then we can expand any W(z,0) as a linear combination

of ¢;(x). Like a Fourier series. Once we have U(x,0) it is trivial to put in the ¢-dependence

U(z, t) = che*iEjt/ﬁwj(I)

because for each known 1); there is a known Ej.

We usually like to create a wavepacket localized near a turning point. The more 9;(z)

wavefunctions we use in describing W(z, 0), the sharper we can make the ¢t = 0 wavepacket.

There are several experimentally or pictorially simple schemes for creating a wavepacket,
which is a superposition of eigenstates of H that have different values of E; (needed in order

to have any motion at all).

Create a non-eigenstate at t = 0

Half Harmonic Oscillator, barrier at = = 0.
Remove barrier at ¢t = 0

To make such a t = 0 wavepacket, we can use any of the 19,1 (0dd) eigenstates that
have a node at = 0. But in order to have time dependent (z) and (p) we also need some
19, (even) eigenstates in pairs, ca1hs(0) = —cotbp(0), so that ca1he(0) 4 co0p(0) = 0. Usually,
in order to make life simple, we choose only 3 v, to create a ¥(z,t = 0) with approzimately

the correct shape
U(z,0) = cotho(x) + c191(x) + catha(w).
This will have a node at x = 0 and larger probability for x < 0 than for z > 0.
<.7A3>t = 20001ZL’01 coswt + 20102l’12 cos wt.

Note that xgg, x11, 22, and xge, are all zero because of the Harmonic Oscillator Av = +1
selection rule for z. Note that probability and () sloshes back and forth between the z < 0

and x > 0 regions at angular frequency w.
What is <ﬁ> ? Is it t—dependent?
t

<ﬁ>t = |co]*Eo + |c1P By + |e2 Eo
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because the 1, are eigenfunctions of ﬁ, therefore orthogonality ensures that there are no

—iEyt/h etiEo

c;cj cross terms, and the pairs of e and t/% factors combine to yield 1. Of course,

FE has to be conserved.

Create a non-eigenstate wavepacket by causing a vertical electronic transition at
t = 0. The excited state potential energy curve is displaced from that of the electronic

ground state.

RL(E) = R V' >0

Notation:

" for upper state
" for lower state

R 1

The v" = 0 wavepacket is “transferred” to the excited state. The Franck—Condon
principle says that, since electrons move much faster than nuclei, the electronic transition
is instantaneous as far as the nuclei are concerned. This means that x and p do not change
in an electronic transition. So we start out with a wavepacket on the excited state where
<§>0 = R!, (p), = [2ufw”/2]Y/2. Tt is clear that the initially formed wavepacket will be
localized near the inner turing point of the excited state and will be experiencing a large
force in the +x direction. If we approximate W(z,0) as a mixture of v/ = 10 and v = 11

states

U(x,0) = c1ow—10(x) + c11911(2)
U (2, )W (z,t) = |e10]?|¥10]? + |enn]?| ¥ ? + 2c10c11910%11 cos wt

(allowing ¢; and 1; to be real)
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P(t) = [ {(W*(z,t)¥(z,0)) |
_ Hclo|2€i10.5fwt/h 4 |Cll|2€i11.5hwt/h 2

4 4 2 2
= Cjp + €1 + 2¢ipcq; coswt

At t =0 P(t) is at its maximum value. But there are a series of perfect rephasings

at t = n®T and minimum values at ¢ = (2n + 1)Z.

Why does the wavepacket behave in this way?

<§> (p);

/2w W

/!
Ry
<R>t = coc11 o1 coswt  (crpcnn < 0)

(D), = ciociipion sinwt  (the Ry 11 harmonic oscillator integral is positive

and the P11 integral is imaginary)

The initial wavepacket moves away from itself faster in momentum space than in

coordinate space, so the initial decay of P(t) is predominantly a momentum effect.

Dephasing and Rephasing of a Wavepacket

A favorite kind of wavepacket is one that is localized near a turning point at t = 0. It is a
particle-like state that we expect will act in a classical mechanical particle-like manner. For
a Harmonic Oscillator, all E,, — E,, are integer multiples of Aw. Thus, if the time-dependent
part of U*(z,t)¥(z,t) (the coherence term) is “phased up” at t = 0, then it will be “phased
down” at t = %7’ = %% because the signs of all the Av = +1 coherence terms will be
reversed. We expect
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0 0 x

t=0 t =33
phased up phase(% down

At in between times, U*W is likely to look very un—particle-like. Dephased.

The wavepacket undergoes simple harmonic motion, and appears in all of its simple
glory at alternating turning points. Its expectation values (z), and (p), move according to

Newton’s laws, but the picture of W*(x,t)W¥(x,t) can be more complicated.

Speculate about what you might expect for a wavepacket composed of eigenstates of
an anharmonic oscillator, with energy levels G(v) = w.(v + 1/2) — weze(v + 1/2)?, where

wete 2 (.02,

Is the periodic rephasing perfect? Is each successive rephasing only partial? Does
the wavepacket eventually lose its particle-like localization? Once this happens, does the

localized wavepacket ever re—emerge as a fully rephased entity?
There is no variation of w with E for Harmonic Oscillator.
All of the coherence terms in HO give
(x), oc Acoswt

(p), x Bsinwt
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Does this look familiar? Just like classical HO

% <.CL"> = % <ch>

v=p/m , here, v is velocity, not vibra-
% (pe) = —(VV(x)) Ehrenfest’s Theorem (tional quantum number
ma = F

Center of wavepacket moves according to Newton’s equations!

Tunneling

For a thin barrier, all ¢, with node in middle (odd v) hardly feel the barrier. They
are shifted to higher E only very slightly.

The 1), that have a local maximum at z = 0 (the even v states) all feel the barrier
very strongly. They are shifted up almost to the energy of next higher level, especially if the
energy of the HO 1, lies below the top of the barrier.

Why do I say that the barrier causes all HO energy levels to be shifted up? [We will

return to this problem once we have discovered non-degenerate perturbation theory.|

We see some evidence for this difference in energy shifts for odd vs. even-v levels by
thinking about the % HO.
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This half-HO oscillator only has levels at E;, F3 of the full oscillator so v = 0 of the

% oscillator is at the energy of v = 1 of the full oscillator.

So a barrier causes even-v levels to shift up a lot and become near-degenerate with
the next higher odd-v level. [Can’t change energy order because the energy levels are in
order of # of nodes.]

Energy Levels of Energy Levels of HO with
Ordinary HO finite height barrier in the middle
5 5

almost back
to normal

4 4
3 3 ;
5 } medium
2
AV
1 % l } small
f
0 4 L

Suppose we make a 11, Uy two-state superposition

U (2, )W (z,t) = 22 + 2 + 2c1e0001b1 cos At
FEi — Ey

- (Ag is small)

Ao, =

What does the 1, = 0 eigenstate of the well with barrier in the middle look like?
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N

shifted slightly up in £
but ¢ is hardly distorted.

v = 0 has zero nodes (wavefunction tried but barely failed to have one node). It

resembles the v = 1 state of the no-barrier oscillator.

Wy o(,0) = 27Y2[hy () + bo(x)] looks like this at ¢ = 0

T_ 0 Ty

1 1
U o(, t)‘I’LO(fL’, t) = —w% + —w% + g cos Ag 1t
’ 2 2

We get oscillation of nearly perfectly localized wavepacket right—left—right ad infinitum.

*x Ag; is small so period of oscillation is long (it is the energy difference between the

v =0 and v = 1 eigenstates of the harmonic plus barrier potential)

Similarly for 3,2 wavepacket.

* left /right localization is less perfect

* oscillation is faster because A, 3 is larger
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MESSAGE: As you approach top of barrier, tunneling gets faster.

Tunneling is slow (small splittings of consecutive pairs of levels) for high barrier, thick

barrier, or at E far below top of barrier.

Can use pattern of energy levels (Ag; and Ay 3) observed in a spectrum (frequency-

domain) to learn about time-domain phenomena (tunneling).

“Dynamics in the frequency-domain.”
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