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MODERN ELECTRONIC STRUCTURE THEORY 
At this point, we have more or less exhausted the list of electronic 

structure problems we can solve by hand. If we were limited to solving 
problems manually, there would be a lot of chemistry we wouldn’t be able to 
explain! Fortunately, the advent of fast personal computers allows chemists 

to routinely use more accurate models of molecular electronic structure. 
These types of calculations typically play a significant role in interpreting 
experimental results: calculations can be used to assign spectra, evaluate 

reaction mechanisms and predict structures of molecules. In this way 
computation is complementary to experiment: when the two agree we have 
confidence that our interpretation is correct. 

The basic idea of electronic structure theory is that, within the Born 
Oppenheimer approximation, we can fix the M nuclei in our molecule at some 

positions RI. Then, we are left with the Hamiltonian for the electrons 
moving in the effective field created by the nuclei: 
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I +∑ 
1 

Eq. 1 
i=1 i=1 I =1 r̂ − R i< j r̂ − r̂i I i j 

Where the first term is the kinetic energy of all N electrons, the second 

term is the attraction between the electrons and nuclei and the third is the 
pairwise repulsion between all the electrons. The central aim of electronic 

structure theory is to find all the eigenfunctions of this Hamiltonian. As 
we have seen, the eigenvalues we 
get will depend on our choice of 

the positions of the nuclei – 
Eel(R1,R2,R3,…RM). As was the 
case with diatomics, these 

energies will tell us how stable 
the molecule is with a given 
configuration of the nuclei {RI} – 

if Eel is very low, the molecule will 

R1 be very stable, while if Eel is high, 
the molecule will be unstable in 

that configuration. The energy Eel(R1,R2,R3,…RM) is called the potential 
energy surface, and it contains a wealth of information, as illustrated in the 
picture at above. We can determine the equilibrium configuration of the 
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molecule by looking for the minimum energy point on the potential energy 
surface. We can find metastable intermediate states by looking for local 
minima – i.e. minima that are not the lowest possible energy states, but which 

are separated from all other minima by energy barriers. In both of these 
cases, we are interested in points where ∇E

el 
= 0 . Further, the potential 

surface can tell us about the activation energies between different minima 

and the pathways that are required to get from the “reactant” state to the 
“product” state. 

Solving the electronic Schrödinger also gives us the electronic 
wavefunctions Ψel(r1,r2,r3,…rN), which allow us to compute all kinds of 
electronic properties – average positions, momenta, uncertainties, etc – as 

we have already seen for atoms. 

We note that while the Hamiltonian above will have many, many eigenstates, 

in most cases we will only be interested in the lowest eigenstate – the 
electronic ground state. The basic reason for this is that in stable 
molecules, the lowest excited states are usually several eV above the ground 

state and therefore not very important in chemical reactions where the 
available energy is usually only tenths of an eV. In cases where multiple 

electronic states are important, the 
Hamiltonian above will give us 
separate potential surfaces E1el, E

2
el, 

Erxn 

σ* potential 
E3el … and separate wavefunctions surface 
Ψ1

el, Ψ
2
el, Ψ 3el. The different 

potential surfaces will tell us about 

the favored conformations of the 
molecules in the different electronic σ potential 

states. We have already seen this surface 

for H2
+. When we solved for the 

electronic states, we got two 
eigenstates: σ and σ*. If we put the electron in the σ orbital, the molecule 

was bound and had a potential surface like the lower surface at right. 
However, if we put the electron in the σ∗ orbital the molecule was not bound 

and we got the upper surface. 
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So, at the very least our task is clear cut: solve for the eigenstates of Eq. 1. 
Unfortunately, this task is also impossible in practice, even on a computer. 
Thus, over the years chemists have developed a vast array of sophisticated 

techniques that allow us to at least approximate these solutions to within a 
tolerable degree of accuracy. Learning all the details of these 
approximations would require a course unto itself: the derivations of the 

individual approximations are exceedingly complex, and the sheer number of 
different approximations that can be made is quite impressive. These 
detailed derivations teach us a lot about what molecules and properties we 

should expect our approximations to work for and how we should think about 
improving our calculations in cases where the theory fails. However, the 
thing that has really brought computational chemistry into the mainstream is 

the fact that one does not have to understand every nuance of a method 
in order to know how to use it successfully. It suffices to have a simple, 

qualitative understanding of how each method works and when it can be 
applied. Then, coupling that knowledge with a little technical proficiency at 
using commercial chemistry software packages allows us to run fairly 

sophisticated calculations on our desktop computer. The next two lectures 
are intended to prepare us to run these types of calculations. 

First, we note that nearly all the popular approximations are still based on 
MO theory – MO theory on steroids in some cases, but MO theory 
nonetheless. Thus, there are still 5 steps in the calculation 

1) Choose an Atomic Orbital Basis 
2) Build the Relevant Matrices 
3) Solve the Eigenvalue Problem 

4) Occupy the orbitals based on a stick diagram 
5) Compute the energy 

In a typical calculation, the computer automatically handles steps 2­4 
automatically – we don’t have to tell it anything at all. It is sometimes 
helpful to know that the computer is doing these things (e.g. The calculation 

crashed my computer. What was it doing when it crashed? Oh, it was trying 
to solve the eigenvalue problem.) but we essentially never have to do them 
ourselves. This leaves two steps (1 and 5) that require some input from us 

for the calculation to run properly 

Choosing an Atomic Orbital Basis 
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The first point here is that for real electronic structure calculations, you 
typically use a basis set that is much larger than your intuition might tell 
you. For example, for H2

+ we guessed that we would get a decent result if 

we wrote: 
ψ = c11sA + c21s

B 

A basis of this type would be called a minimal basis set, because it is the 
smallest one that is even close to right. In a more accurate calculation, you 

might use a basis that looks more like: 
ψ = c11s

A 
+ c21s

B 
+ c3 2s

A 
+ c4 2s

B 
+ c5 2 p

xA 
+ c6 2 p

xB 
+ c7 2 p

yA 

+ c8 2 p
yA 

+ c9 2 p
zA 

+ c10 2 p
zB 

+ c11 3s
A 

+ c12 3s
B 

The reason we use such extended basis sets arises from a point that was 
discussed earlier concerning MO theory. Because our results are variational, 
a bigger basis always gets us a lower energy, and therefore a longer AO 

expansion always gets us closer to the ground state energy. In the worst 
case, the unimportant basis functions will just have coefficients that are 

very near zero. While such extended basis sets would be a significant 
problem if we were working things out by hand, computers have no problem 
dealing with expansions involving even 10,000 basis functions. 

The second important point about the atomic orbitals we use is that they are 
not hydrogenic orbitals. The reason for this is that the two­electron 

integrals involving hydrogenic orbitals cannot all be worked out analytically, 
making it very difficult to complete Step 2. Instead of hydrogenic orbitals – 

which decay like e 
−r – we will use Gaussian orbitals that decay like e 

−α r 
2 

. 
Gaussians do not look very much like 

hydrogenic orbitals – they don’t have a cusp 
at r=0 and they decay much too fast at 

large distances. About the only good thing 
about them is that they have a mximum at 
r=0 and decay. These differences between 

Gaussians and hydogenic orbitals are not a 
problem, though, because we use extended 
basis sets as emphasized above. Basically, 

given enough Gaussians, you can expand 
anything you like – including a hydrogenic 
orbital, as shown in the picture at right. So 
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while using Gaussians may mean we have to use a few extra AOs, if we use 
enough of them we should be able to get the same answer. 

So we plan to use relatively large Gaussian basis sets for our calculations. 
How exactly do we choose those basis sets? Thankfully, a significant amount 
of trial­and­error research has distilled the choices down to a few key basis 

set features. Depending on the problem at hand and the accuracy desired 
we only need to consider three aspects of the AO basis. 

Single, Double, Triple, Quadruple Zeta Basis Sets 
As we have already discussed for MO theory of diatomics, the smallest basis 
we can think of for describing bonding would include all the valence orbitals 

of each atom involved. Thus, for H we had 1 s­function, for C there were 2 
s­functions and one set of p’s. Similarly, for sulfur we would have needed 3 

s­functions and 2 p’s …. A basis of this size is called a minimal or single zeta 
basis. The term “single zeta” refers to the fact that we have only a single 
set of the valence functions (Note: single valence might seem like a more 

appropriate name, but history made a different choice). The most important 
way to expand the basis is to include more than a single set of valence 
functions. Thus, in a double zeta (DZ) basis set, one would include 2 s­

functions for H, 3 s­ and 2 p­functions for C and 4 s­ and 3 p­functions for 
S. Qualitatively, we think of these basis functions as coming from increasing 
the n quantum number: the first s function on each atom is something like 1s, 

the second something like 2s, the third like 3s …. Of course, since we are 
using Gaussians, they’re not exactly 1s, 2s, 3s … but that’s the basic idea. 
Going one step further, a triple zeta (TZ) basis would have: H=3s, C=4s3p, 

S=5s4p. For Quadruple zeta (QZ): H=4s, C=5s4p, S=6s5p and so on for 5Z, 
6Z, 7Z. Thus, one has: 

H,He Li­Ne Na­Ar Names 
Minimal 1s 2s1p 3s2p STO­3G 
DZ 2s 3s2p 4s3p 3­21G,6­31G, D95V 

TZ 3s 4s3p 5s4p 6­311G,TZV 

Unfortunately, the commonly used names for basis sets follow somewhat 

uneven conventions. The basic problem is that many different folks develop 
basis sets and each group has their own naming conventions. At the end of 
the table above, we’ve listed a few names of commonly used SZ,DZ and TZ 

basis sets. There aren’t any commonly used QZ basis sets, because once 
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your basis is that large, it is best to start including polarization functions 
(see below). 

Polarization Basis Functions 
Note that no matter how high you go in the DZ, TZ, QZ hierarchy, you will 
never, for example, get a p­function on hydrogen or a d­function on carbon. 

These functions tend to be important for describing polarization of the 
electrons; at a qualitative level, the p­functions aren’t as flexible in their 
angular parts and it’s hard to get them to “point” in as many directions as d­

functions. Thus, particularly when dealing with directional bonding in 
molecules, it can be important to include some of these higher angular 
momentum functions in your AO basis. In this situation the basis set is said 

to contain some “polarization” functions. The general nomenclature of 
polarization functions is to add the letter “P” to a basis set with a single set 

of polarization functions, and “2P” to a basis with two sets. Thus, a DZP 
basis would have: 2s1p on hydrogen, 3s2p1d on carbon and 4s3p1d on sulfur. 
A TZP basis set would have 3s1p on hydrogen, 4s3p1d on carbon and 5s4p1d 

on sulfur. 

H,He Li­Ne Na­Ar Names 

DZP 2s1p 3s2p1d 4s3p1d 6­31G(d,p), D95V 
TZP 3s1p 4s3p1d 5s4p1d 6­311G(d,p),TZVP 

We note that in practice it is possible to mix­and­match different numbers 
of polarization functions with different levels of zeta basis sets. The 
nomenclature here is to put (xxx,yyy) after the name of the basis set. “xxx” 

specifies the number and type of polarization functions to be placed on 
Hydrogen atoms and “yyy” specifies the number and type of polarization 

functions to be placed on non­hydrogen atoms. Thus, we would have, for 
example: 

H,He Li­Ne Na­Ar 
6­311G(2df,p) 3s1p 4s3p2d1f 5s4p2d1f 

Diffuse Functions 
Occasionally, and particularly when dealing with anions, the SZ/DZ/TZ/… 
hierarchy converges very slowly. For anions, this is because the extra 

electron is only very weakly bound, and therefore spends a lot of time far 
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from the nucleus. It is therefore best to include a few basis functions that 
decay very slowly to describe this extra electron. Functions of this type 

are called “diffuse” functions. They are still Gaussians ( e 
−α r 

2 

), but the value 
of α is very, very small causing the atomic orbital to decay slowly. Similar to 

the situation for polarization functions, diffuse functions can be added in a 
mix­and­match way to standard basis sets. Here, the notation “+” or “aug­“ 

is added to a basis set to show that diffuse functions have been added. 
Thus, we have basis sets like 3­21++G, 6­31+G(d,p), aug­TZP. 

Aside: Transition Metals 
Those of you interested in inorganic chemistry will note that no transition 
metals appear in the tables above. This is not because there aren’t basis 

sets for transition metals – it is just more complicated to compare different 
transition metal basis sets. First, we note that many of the basis sets above 
are defined for transition metals. Thus, for example, a 6­31G(d,p) basis on 

iron is 5s4p2d1f while a TZV basis for iron is 6s5p3d. The reason we didn’t 
include this above is that the idea of “valence” for a transition metal is a 
subject of debate: is the valence and s­ and d­ function? An s a p and a d? 

Hence, depending on who put the basis set together, there will be some 
variation in the number of functions. However, one still expects the same 
ordering in terms of quality: TZ will be better than DZ, DZP will be better 

than a minimal basis, etc. Thus, you can freely use the above basis sets for 
all the elements between K and Kr without significant modification. 
Extending the above table for specific basis sets gives: 

K­Ca Sc­Zn Ga­Kr 

3­21G 5s4p 5s4p2d 5s4p1d 
6­31G(d,p) 5s4p1d 5s4p2d1f N/A 
6­311G(d,p) 8s7p2d N/A 8s7p3d 

TZV 6s3p 6s3p2d 6s5p2d 

Things also become more complicated when dealing with second row 

transition metals. Here, relativistic effects become important, because the 
Schrödinger equation predicts that the 1s electrons in these atoms are 
actually moving at a fair fraction of the speed of light. Under these 

circumstances, the Schrödinger equation is not strictly correct and we need 
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to start considering corrections for relativistic effects. The most efficient 
way to incorporate the relativity is to use an effective core potential (ECP). 
An effective core potential removes the core electrons from the problem 

and replaces them with an effective potential that the valence electrons 
feel. This potential reflects the combined interaction with the nucleus and 
the (relativistic) core electrons. Thus, for an ECP we specify both how many 

core electrons we want to neglect and how many basis functions we want to 
use to describe the valence electrons. For example, one popular double zeta 
ECP is the LANL2DZ basis. As an example, for ruthenium LANL2DZ 

replaces the 28 core electrons (1s22s22p63s23p63d10=Argon) with an 
effective potential and uses a 3s3p2d basis to describe the valence orbitals. 
Thus, for the second transition series we have (using 

[CoreSize]/ValenceBasisSize as our shorthand): 
Y­Cd Hf­Hg 

LANL2DZ [Argon]/3s3p2d N/A 
SDD [Argon]/8s7p6d [Kr4d104f14]/8s7p6d 

As one progresses further up the periodic table, fewer and fewer basis sets 
are available, simply because less is known about their chemistry. 

This is just a very brief overview of what basis sets are available and how 

good each one is expected to be. The general idea of using basis sets is to 
use larger and larger basis sets until the quantity we are computing stops 
changing. This is based on the idea that we are really using the AO 

expansion to approximate the exact solution of the Schrödinger equation. If 
we had an infinite basis, then we would get the exact answer, but with a 
large and finite basis we should be able to get close enough. Note, however, 

that the calculation will typically take more time in a larger basis than in a 
smaller one. Thus, we really want to make the basis just big enough to get 
the answer right, but no larger. 

Computing the Energy 

For simple MO theory, we used the non­interacting (NI) electron model for 
the energy: 
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N N 

E
NI 

= E = ∑∫ψ i ( ) 1 Ĥ ( ) τ∑ ψ
i 

1 d
i 

i=1 i=1 

Where, on the right hand side we have noted that we can write the NI 
energy as a sum of integrals involving the orbitals. We already know from 

looking at atoms that this isn’t going to be good enough to get us really 
accurate answers; the electron­electron interaction is just too important. 
In real calculations, one must choose a method for computing the energy 

from among several choices. 

The Hartree Fock (HF) Approximation 

The Hartree­Fock method uses the IPM energy expression we’ve already 
encountered: 

N 

E
IPM 

= ∑E
i 

+ ∑ J� 
ij 

− K� 
ij 

i=1 

N 

E
i 

= ∑∫ i ( ) ˆψ
i ( ) dψ 1 H 1 τ 

i=1 

J� ≡ ∫∫ ψ i 
* ( ) * ( ) 

r
1 

− 
1 

r
2 

ψ i ( ) 1 ψ ( ) 2 dr dr
2
dσ dσ

2
1 ψ 2ij j j 1 1 

K� ≡ ψ * 1 ψ * 2 
1 ψ i 2 ψ 1 dr

1
dr dσ

1
dσij ∫∫ i ( ) j ( ) 

r
1 

− r
2 

( ) j ( ) 2 2 

Since the energy contains the average repulsion, we expect our results will 
be more accurate. However, there is an ambiguity in this expression. The 
IPM energy above is correct for a determinant constructed out of any set of 

orbitals {ψ i } and the energy will be different depending on the orbitals we 

choose. For example, we could have chosen a different set of orbitals, {ψ ' } ,i 

and gotten a different energy: 
N 

E ' 
NI 

= ∑E ' 
i 

+ ∑ J� ' 
ij 
− K� ' 

ij 

i=1 

How do we choose the best set of orbitals then? Hartree­Fock uses the 

variational principle to determine the optimal orbitals. That is, in HF we find 
the set of orbitals that minimize the independent particle energy. These 
orbitals will be different from the non­interacting orbitals because they will 

take into account the average electron­electron repulsion terms in the 
Hamiltonian. Thus, effects like shielding that we have discussed 

qualitatively will be incorporated into the shapes of the orbitals. This will 
tend to lead to slightly more spread out orbitals and will also occasionally 
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change the ordering of different orbitals (e.g. σ might shift below π once 

interactions are included). 

Now, the molecular orbitals (and hence the energy) are determined by their 

coefficients. Finding the best orbitals is thus equivalent to finding the best 
coefficients. Mathematically, then, we want to find the orbitals that make 
the derivative of the IPM energy zero: 

∂E ∂ N 
IPM � 
α

= 
α ∑E

i 
+ ∑ J� 

ij 
− K

ij 
= 0 

∂c
i 

∂c
i i=1 

In order to satisfy this condition, one typically resorts to an iterative 

procedure, where steps 2­5 of our MO procedure are performed repeatedly: 

1) Choose an AO Basis 

1’) Guess an IPM Hamiltonian Heff 

2) Build Heff, S matrices 

Choose 3) Solve the Eigenvalue Problem 

Better 

Heff 
4) Occupy Lowest Orbitals 

dE 
5) Compute E, 

dc 

dE 
= 0? Done 

No dc Yes 

Here, HF makes use of the fact that defining an IPM Hamiltonian, Heff, 
completely determines the molecular orbital coefficients, c. Thus, the most 

convenient way to change the orbitals is actually to change the Hamiltonian 
that generates the orbitals. The calculation converges when we find the 
molecular orbitals that give us the lowest possible energy, because then 
dE 

= 0 . These iterations are called self­consistent field (SCF) iterations 
dc 
and the effective Hamiltonian Heff is often called the Fock operator, in honor 
of one of the developers of the Hartree­Fock approximation. 

Generally Hartree Fock is not very accurate, but it is quite fast. On a 
decent computer, you can run a Hartree Fock calculation on several hundred 

atoms quite easily, and the results are at least reasonable. 
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Density Functional Theory (DFT) 
Here, we still use a Slater determinant to describe the electrons. Hence, 
the things we want to optimize are still the MO coefficients c α . However, we 

use a different prescription for the energy – one that is entirely based on 
the electron density. For a single determinant, the electron density, ρ(r) is 
just the probability of finding an electron at the point r. In terms of the 

occupied orbitals, the electron density for a Slater Determinant is: 

N 
2 

ρ r ψ r( ) = ∑ α ( ) Eq. 2 
α =1 

2 

This has a nice interpretation: ψ
i 

r( ) is the probability of finding an 

electron in orbital i at a point r. So the formula above tells us that for a 

determinant the probability of finding an electron at a point r is just the 
sum of the probabilities of finding it in one of the orbitals at that point. 

There is a deep theorem (the Hohenberg­Kohn Theorem) that states: 

There exists a functional Ev[ρ] such that, given the ground state 
density, ρ0, Ev[ρ0]=E0 where E0 is the exact ground state energy. 
Further, for any density, ρ’, that is not the ground state density, 
Ev[ρ’]>E0. 

This result is rather remarkable. While solving the Schrödinger Equation 

required a very complicated 3N dimensional wavefunction Ψel(R1, R2,…RN), 
this theorem tells us we only need to know the density ­ which is a 3D 

function! – and we can get the exact ground state energy. Further, if we 
don’t know the density, the second part of this theorem gives us a simple 
way to find it: just look for the density that minimizes the functional Ev. 

The unfortunate point is that we don’t know the form of the functional Ev. 
We can prove it exists, but we can’t construct it. However, from a 

pragmatic point of view, we do have very good approximations to Ev, and the 
basic idea is to choose an approximate (but perhaps very, very good) form 
for Ev and then minimize the energy as a function of the density. That is, we 

dE 
vlook for the point where = 0 . Based on Eq. 2 above, we see that ρ just 

dρ 
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depends on the MOs and hence on the MO coefficients, so once again we are 
dE 

vlooking for the set of MO coefficients such that = 0 . Given the 
dc 

similarity between DFT and HF, it is not surprising that DFT is also solved 
by self consistent field iterations. In fact, in a standard electronic 

structure code, DFT and HF are performed in exactly the same manner (see 
flow chart above). The only change is the way one computes the energy and 
dE 

. 
dc 

Now, as alluded to above, there exist good approximations (note the plural) 
to Ev. Just as was the case with approximate AO basis sets, these 

approximate energy expressions have strange abbreviations. We won’t go 
into the fine differences between different DFT energy expressions here. 
I’ll simply note that roughly, the quality of the different functionals is 

expected to follow: 
LSDA < PBE ≈ BLYP < PBE0 ≈ B3LYP 

Thus, LSDA is typically the worst DFT approximation and B3LYP is typically 

among the best. I should mention that this is just a rule of thumb; unlike 
the case for basis sets where we were approaching a well­defined limit, here 

we are trying various uncontrolled approximations to an unknown functional. 
Experience shows us that B3LYP is usually the best, but this need not always 
be the case. 

Finally, we note that the speed of a DFT calculation is about the same as 
Hartree Fock – both involve self­consistent field iterations to determine the 

best set of orbitals, and so both take about the same amount of computer 
time. However, for the same amount of effort, you can get quite accurate 
results. As a rule of thumb, with B3LYP you can get energies correct to 

within 3 kcal/mol and distances correct to within .01 Å. 

Post­Hartree Fock Calculations 

Here, the idea is to employ wavefunctions that are more flexible than a 
Slater determinant. This can be done by adding up various combinations of 
Slater determinants, by adding terms that explicitly correlate pairs of 

electrons (e.g. functions that depend on r1 and r2 simulataneously) and a 
variety of other creative techniques. These approaches are all aimed at 
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incorporating the correlation between electrons – i.e. the fact that 

electrons tend to spend more time far apart from one another as opposed to 
close together. This correlation reduces the average repulsion employed in 
HF and brings us closer to the true ground state energy. In each case, one 

usually does a Hartree­Fock calculation first and then includes the 
correlation afterward, leading to the heading of “post­Hartree Fock” 
methods. Once again, there are a number of acronyms, and we merely assert 

that the quality of the results goes approximately like: 
HF < CASSCF < MP2 < CCSD < MP4 < CCSD(T) 

Here, the ordering is rigorous: we have something solid that we are tyring to 

approximate and going from left to right we are making better and better 
approximations. On the scale above, DFT typically gives results of about 

MP2 quality. 

As a general rule, post­HF calculations are much, much more expensive than 

HF or DFT and also require bigger basis sets: whereas HF might converge 
with a DZ or TZ basis, a post­HF calculation might require QZ or even 5Z. 
Hence, they should only be attempted for relatively small molecules where 

high accuracy is required 

Combining what we have learned, then, the approximations we can make fit 

nicely into a two­dimensional parameter space: 

3­21G TZVP


HF 

CASSCF 

DFT 

MP2 

CCSD 

CCSD(T) 

Method 

STO­3G 6­31G(d,p) 6­311G+(2df,p) 

Exact 

Answer 

Basis 

Feasible 
Calculations 
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On the one axis, we have the basis sets we can choose from. On the other, 

we have the different methods for approximating the energy. The get close 
to the exact answer, we need to employ a large basis set and an accurate 
energy method. Unfortunately, both increasing the size of the basis and 

improving the method tend to slow our calculations down. Given that we don’t 
want to wait years and years to find out the result of a calculation, modern 
computers therefore limit how accurate our answers can be (as illustrated 

with the red line above). As we become experts at what is and is not 
feasible with current computing power, we become better able to get good 
accuracy for a variety of problems. 


