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HÜCKEL MOLECULAR ORBITAL THEORY


In general, the vast majority polyatomic molecules can be thought of as 
consisting of a collection of two­electron bonds between pairs of atoms. So 
the qualitative picture of σ and π­bonding and antibonding orbitals that we 

developed for a diatomic like CO can be carried over give a qualitative 
starting point for describing the C=O bond in acetone, for example. One 
place where this qualitative picture is extremely useful is in dealing with 

conjugated systems – that is, molecules that contain a series of alternating 
double/single bonds in their Lewis structure like 1,3,5­hexatriene: 

Now, you may have been taught in previous courses that because there are

other resonance structures you can draw for this molecule, such as: 

that it is better to think of the molecule as having a series of bonds of 
order 1 ½ rather than 2/1/2/1/… MO theory actually predicts this 

behavior, and this prediction is one of the great successes of MO 
theory as a descriptor of chemistry. In this lecture, we show how even a 

very simple MO approximation describes conjugated systems. 

Conjugated molecules of tend to be planar, so that we can place all the atoms 

in the x­y plane. Thus, the molecule will have reflection symmetry about the 
z­axis: 

z 

Now, for diatomics, we had reflection symmetry about x and y and this gave 

rise to πx and πy orbitals that were odd with respect to reflection and σ 

orbitals that were even. In the same way, for planar conjugated systems the 
orbitals will separate into σ orbitals that are even with respect to reflection 
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and πz orbitals that are odd with respect to reflection about z. These πz 

orbitals will be linear combinations of the pz orbitals on each carbon atom: 

z 

In trying to understand the chemistry of these compounds, it makes sense 
to focus our attention on these πz orbitals and ignore the σ orbitals. The πz 

orbitals turn out to be the highest occupied orbitals, with the σ orbitals 

being more strongly bound. Thus, the forming and breaking of bonds – as 
implied by our resonance structures – will be easier if we talk about making 
and breaking π bonds rather than σ. Thus, at a basic level, we can ignore the 

existence of the σ­orbitals and deal only with the π­orbitals in a qualitative 
MO theory of conjugated systems. This is the basic approximation of 

Hückel theory, which can be outlined in the standard 5 steps of MO theory: 

1) Define a basis of atomic orbitals. Here, since we are only interested 

in the πz orbitals, we will be able to write out MOs as linear 
combinations of the pz orbitals. If we assume there are N carbon 
atoms, each contributes a pz orbital and we can write the µ th MOs as: 

N 

π µ = ∑ci 
µ 

pz

i 

i=1 

2) Compute the relevant matrix representations. Hückel makes some 
radical approximations at this step that make the algebra much 

simpler without changing the qualitative answer. We have to compute 
two matrices, H and S which will involve integrals between pz orbitals 
on different carbon atoms: 

H p H p d = p d τ
ij = ∫ z

i ˆ 
z

j τ S
ij ∫ pz

i 
z

j 

The first approximation we make is that the pz orbitals are 
orthonormal. This means that: 

⎧1     i = j 
S

ij = ⎨ 
⎩0  i ≠ j 
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Equivalently, this means S is the identity matrix, which reduces our 
generalized eigenvalue problem to a normal eigenvalue problem 

i α = EαS c i µ ⇒ H c µ = Eµc
µ

H c i 

The second approximation we make is to assume that any Hamiltonian 

integrals vanish if they involve atoms i,j that are not nearest 
neighbors. This makes some sense, because when the pz orbitals are 
far apart they will have very little spatial overlap, leading to an 

integrand that is nearly zero everywhere. We note also that the 
diagonal (i=j) terms must all be the same because they involve the 
average energy of an electron in a carbon pz orbital: 

H = p H p dτ ≡ α
ii ∫ z

i ˆ 
z

i 

Because it describes the energy of an electron on a single carbon, α is 
often called the on­site energy. Meanwhile, for any two nearest 

neighbors, the matrix element will also be assumed to be constant: 

H = p Ĥ p dτ ≡β i,j neigbors 
ij ∫ z

i 
z

j 

This last approximation is good as long as the C­C bond lengths in the 
molecule are all nearly equal. If there is significant bond length 
alternation (e.g. single/double/single…) then this approximation can be 

relaxed to allow β to depend on the C­C bond distance. As we will see, 
β allows us to describe the electron delocalization that comes from 
multiple resonance structures and hence it is often called a resonance 

integral. There is some debate about what the “right” values for the 
α, β parameters are, but one good choice is α=­11.2 eV and β=­.7 eV. 

3) Solve the generalized eigenvalue problem. Here, we almost always 

need to use a computer. But because the matrices are so simple, we 
can usually find the eigenvalues and eigenvectors very quickly. 

4) Occupy the orbitals according to a stick diagram. At this stage, we 

note that from our N pz orbitals we will obtain N π orbitals. Further, 
each carbon atom has one free valence electron to contribute, for a 
total of N electrons that will need to be accounted for (assuming the 

molecule is neutral). Accounting for spin, then, there will be N/2 
occupied molecular orbitals and N/2 unoccupied ones. For the ground 

state, we of course occupy the lowest energy orbitals. 
5) Compute the energy. Being a very approximate form of MO theory, 

Hückel uses the non­interacting electron energy expression: 
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N 

Etot = ∑Ei 
i=1 

where Ei are the MO eigenvalues determined in the third step. 

To illustrate how we apply Hückel in practice, let’s work out the energy of 
benzene as an example. 

1 

2 

35 

6 

4 

1) Each of the MOs is a linear combination of 6 pz orbitals 

⎛ cµ ⎞ 
⎜ 

1 

µ ⎟ 
⎜ c2 ⎟ 

6 ⎜ cµ ⎟ 
ψ µ = ∑c

µ 
pz

i → c
µ = ⎜ 3 

µ ⎟i 
i=1	 ⎜ c4 ⎟ 

⎜ cµ ⎟ 
⎜ 5 ⎟⎜ µ ⎟
⎝ c6 ⎠ 

2) It is relatively easy to work out the Hamiltonian. It is a 6­by­6 matrix. 
The first rule implies that every diagonal element is α: 

⎛α ⎞ 
⎜ ⎟ 
⎜ α ⎟ 
⎜ α ⎟ 

H = ⎜ ⎟ 
⎜ α ⎟ 
⎜ α ⎟ 
⎜ ⎟⎜	 α ⎟⎝	 ⎠ 

The only other non­zero terms will be between neighbors: 1­2, 2­3, 3­4, 4­5, 
5­6 and 6­1. All these elements are equal to β: 

⎛α β β ⎞ 
⎜ ⎟ 
⎜ β α β ⎟ 
⎜ β α β ⎟ 

H = ⎜ ⎟ 
⎜ β α β ⎟ 
⎜ β α β ⎟ 
⎜	 ⎟⎜	 ⎟
⎝ β	 β α ⎠ 

All the rest of the elements involve non­nearest neighbors and so are zero:
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⎛α β 0 0 0 β ⎞ 
⎜ ⎟ 
⎜ β α β 0 0 0 ⎟ 
⎜ 0 β α β 0 0 ⎟ 

H = ⎜ ⎟ 
⎜ 0 0 β α β 0 ⎟ 
⎜ 0 0 0 β α β ⎟ 
⎜ ⎟⎜ ⎟
⎝ β 0 0 0 β α ⎠ 

3) Finding the eigenvalues of H is easy with a computer. We find 4 distinct 
energies: 

E6=α−2β 

E4=E5=α−β 

E2=E3=α+β 

E1=α+2β 

The lowest and highest energies are non­degenerate. The second/third and 
fourth/fifth energies are degenerate with one another. With a little more 
work we can get the eigenvectors. They are: 

⎛ +1⎞ ⎛ +1⎞ ⎛ +1⎞ ⎛ +1⎞ ⎛ +1⎞ ⎛ +1⎞ 
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ 
⎜ −1⎟ ⎜ −2⎟ ⎜ 0 ⎟ ⎜ 0 ⎟ ⎜ +2⎟ ⎜ +1⎟ 

1 ⎜ +1⎟ 1 ⎜ +1⎟ 1 ⎜ −1⎟ 1 ⎜ −1⎟ 1 ⎜ +1⎟ 1 ⎜ +1⎟ 
c 6 = ⎜ ⎟ c 5 = ⎜ ⎟ c 4 = ⎜ ⎟ c 3 = ⎜ ⎟ c 2 = ⎜ ⎟ c 1 = ⎜ ⎟ 

6 ⎜ −1⎟ 12 ⎜ +1⎟ 4 ⎜ +1⎟ 4 ⎜ −1⎟ 12 ⎜ −1⎟ 6 ⎜ +1⎟ 
⎜ +1⎟ ⎜ −2⎟ ⎜ 0 ⎟ ⎜ 0 ⎟ ⎜ −2⎟ ⎜ +1⎟ 
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ −1⎠ ⎝ +1⎠ ⎝ −1⎠ ⎝ +1⎠ ⎝ −1⎠ ⎝ +1⎠ 

The pictures at the bottom illustrate the MOs by denting positive (negative) 
lobes by circles whose size corresponds to the weight of that particular pz 

orbital in the MO. The resulting phase pattern is very reminiscent of a 

particle on a ring, where we saw that the ground state had no nodes, the 
first and second excited states were degenerate (sine and cosine) and had 

one node, the third and fourth were degenerate with two nodes. The one 
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difference is that, in benzene the fifth excited state is the only one with

three nodes, and it is non­degenerate.

4) There are 6 π electrons in benzene, so we doubly occupy the first 3 MOs:


E6=α−2β 

E4=E5=α−β 

E2=E3=α+β 

E1=α+2β 

5) The Hückel energy of benzene is then: 
E = 2E + 2E + 2E = 6α + 8β1 2 3 

Now, we get to the interesting part. What does this tell us about the 
bonding in benzene? Well, first we note that benzene is somewhat more 

stable than a typical system with three double bonds would be. If we do 
Hückel theory for ethylene, we find that a single ethylene double bond has 
an energy 

E
C=C = 2α + 2β 

Thus, if benzene simply had three double bonds, we would expect it to have a 
total energy of 

E = 3E
C=C = 6α + 6β 

which is off by 2β. We recall that β is negative, so that the ππππ­electrons in 

benzene are more stable than a collection of three double bonds. We call 
this aromatic stabilization, and Hückel theory predicts a similar stabilization 
of other cyclic conjugated systems with 4N+2 electrons. This energetic 

stabilization explains in part why benzene is so unreactive as compared to 
other unsaturated hydrocarbons. 

We can go one step further in our analysis and look at the bond order. In 
Hückel theory the bond order can be defined as: 

occ 
µ µ

O
ij ≡ ∑c

i cj 
µ=1 

This definition incorporates the idea that, if molecular orbital µ has a bond 

between the ith and jth carbons, then the coefficients of the MO on those 
carbons should both have the same sign (e.g. we have pz

i + pz
j). If the orbital 
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is antibonding between i and j, the coefficients should have opposite 
signs(e.g. we have pz

i ­ pz
j). The summand above reflects this because 

c
i 
µ 
c

µ 
j > 0 if c

i 
µ , cµ 

j have same sign 

c
i 
µ 
c

µ 
j < 0 if c

i 
µ , cµ 

j have opposite sign 

Thus the formula gives a positive contribution for bonding orbitals and a 

negative contribution for antibonding. The summation over the occupied 
orbitals just sums up the bonding or antibonding contributions from all the 
occupied MOs for the particular ij­pair of carbons to get the total bond 

order. Note that, in this summation, a doubly occupied orbital will appear 
twice. Applying this formula to the 1­2 bond in benzene, we find that: 

O ≡ 2c
µ=1 

c
µ=1 + 2c

µ=2 
c

µ=2 + 2c
µ=3 

c
µ=3


12 1 2 1 2 1 2


⎛ +1 ⎞ ⎛ +1 ⎞ ⎛ +1 ⎞ ⎛ +2 ⎞ ⎛ +1 ⎞ ⎛ 0 ⎞ 
= 2 ⎜ ⎟ × ⎜ ⎟ + 2 ⎜ ⎟ × ⎜ ⎟ + 2 ⎜ ⎟ × ⎜ ⎟

⎝ 6 ⎠ ⎝ 6 ⎠ ⎝ 12 ⎠ ⎝ 12 ⎠ ⎝ 4 ⎠ ⎝ 4 ⎠ 
1 2 2 

= 2 + 2 = 
6 12 3 

Thus, the C1 and C2 formally appear to share 2/3 of a π­bond [Recall that we 
are omitting the σ­orbitals, so the total bond order would be 1 2/3 including 

the σ bonds]. We can repeat the same procedure for each C­C bond in 
benzene and we will find the same result: there are 6 equivalent π­bonds, 
each of order 2/3. This gives us great confidence in drawing the Lewis 
structure we all learned in freshman chemistry: 

You might have expected this to give a bond order of 1/2 for each C­C π­
bond rather than 2/3. The extra 1/6 of a bond per carbon comes directly 

from the aromatic stabilization: because the molecule is more stable than 
three isolated π­bonds by 2β, this effectively adds another π­bond to the 

system, which gets distributed equally among all six carbons, resulting in an 
increased bond order. This effect can be confirmed experimentally, as 
benzene has slightly shorter C­C bonds than non­aromatic conjugated 

systems, indicating a higher bond order between the carbons. 

Just as we can use simple MO theory to describe resonance structures and 

aromatic stabilization, we can also use it to describe crystal field and ligand 
field states in transition metal compounds and the sp, sp2 and sp3 hybrid 
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orbitals that arise in directional bonding. These results not only mean MO 
theory is a useful tool – in practice these discoveries have led to MO theory 
becoming part of the way chemists think about molecules. 


