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MOLECULAR ORBITAL THEORY­ PART II 

For the simple case of the one­electron bond in H2
+ we have seen that using 

the LCAO principle together with the variational principle led to a recipe for 
computing some approximate orbitals for a system that would be very 

difficult to solve analytically. To generalize this to the more interesting 
case of many electrons, we take our direction from our experience with the 
independent particle model (IPM) applied to atoms and we build up 

antisymmetrized wavefunctions out of the molecular orbitals. This is the 
basic idea behind molecular orbital theory – there are many variations on the 
central theme, but the same steps are always applied. Rather than go step­

by­step and deal with H2 and then Li2 and then LiH … we will instead begin by 
stating the general rules for applying MO theory to any system and then 
proceed to show some illustrations of how this works out in practice. 

1) Define a basis of atomic orbitals 
For H2

+ our atomic orbital basis was simple: we used the 1s functions 

from both hydrogen atoms and wrote our molecular orbitals as linear 
combinations of our basis functions: 

ψ = c 1s + c 1s1 A 2 B 

Note that the AO basis determines the dimension of our MO vector and 
also determines the quality of our result – if we had chosen the 3p 
orbitals instead of the 1s orbitals, our results for H2

+ would have been 

very wrong! 

For more complicated systems, we will require a more extensive AO basis. 

For example, in O2 we might want to include all the 2s and 2p orbitals on 
both oxygens, in which case our MOs would take the form 

ψ = c1 2s
A + c2 2 p

xA + c3 2 p
yA + c4 2 p

zA + c5 2s
B + c6 2 p

xB + c7 2 p
yB + c8 2 p

zB 

Meanwhile, for methane we might want to include the 1s functions on all 
four hydrogens and the 2s and 2p functions on carbon: 

ψ = c11s1 + c21s2 + c31s3 + c41s4 + c5 2s + c6 2 p
x + c7 2 p

y + c8 2 p
z 

In the general case, we will write: 
N 

AO ψ = ∑ciφi 
i=1 

and represent our MOs by column vectors: 
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⎛ c1 ⎞ 
⎜ ⎟ 

ψ
� 

= ⎜ 
c2 ⎟ 
⎜ ... ⎟ 
⎜ ⎟ 
⎝ cN ⎠ 

We note that for the sake of accuracy it is never a bad idea to include 

more AO functions than you might think necessary – more AO functions 
will always lead to more accurate results. The price is that the more 
accurate computations also tend to be more complicated and time 

consuming. To illustrate, note that we could have chosen to write the H2
+ 

MOs as linear combinations of four functions – the 1s and 2s states on 
each atom: 

ψ = c 1s + c 1s + c 2s + c 2s1 A 2 B 3 A 4 B 

Now, when we use the variational principle to get the coefficients of the 
lowest MO , c0, we are guaranteed that there is no set of coefficients 
that will give us a lower energy. This is the foundation of the variational 

method. Note that one possible set of coefficients is c3=c4=0, in which 
case our 4­function expansion reduces to the 2­function expansion above. 

Thus, the variationally optimal 4­function MO will always have an energy 
less than or equal to the optimal 2­function MO. As a result, the 
expansion with four functions allows the approximate MO to get closer to 

the ground state energy. This makes sense, as the four AO expansion 
has more flexibility than the constrained two AO expansion used 
previously. The reason we didn’t use the four function expansion from 

the beginning is that all the algebra is twice as difficult when we use four 
functions as two: the vectors are twice as long, the matrices are twice as 
big…. At least for a first try, it is generally good to start with the 

smallest conceivable set of AOs for performing a calculation. If higher 
accuracy is required, a longer expansion can be tried. 
2) Compute the relevant matrix representations 

For H2
+ we had to compute two matrices – the Hamiltonian and the 

overlap, which were both 2­by­2 by virtue of the two AO basis functions: 

⎛ H11 H12 ⎞ 
⎛
⎜ ∫1sAĤ 

el 1sAdτ ∫1sAĤ 
el 1sBdτ ⎞

⎟
H ≡ ⎜ ⎟ ≡ 

⎝ H21 H22 ⎠ ⎜⎜
⎝ ∫1sBĤ 

el 1sAdτ ∫1sBĤ 
el 1sBdτ ⎟⎟

⎠ 

⎛ S11 S12 ⎞ ⎜
⎛ ∫1s 1s dτ ∫1s 1s dτ 

⎟
⎞ 

A A A B 
S ≡ ≡⎜ 

S S ⎟ ⎜ ⎟⎝ 21 22 ⎠ ⎜
⎝ ∫1sB1sAdτ ∫1sB1sBdτ ⎟

⎠ 
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In the general case, the Hamiltonian and overlap become N­by­N

matrices of the form:


⎛ ∫φ1 
AO Ĥ φ1 

AO 
∫φ1 

AO Ĥ φ2 
AO 

∫φ1 
AO Ĥ φN

AO ⎞ 
⎛ H11 H12 ... H1N ⎞ ⎜ ⎟ 
⎜ ⎟ ⎜ AO ˆ AO AO ˆ AO AO ˆ AO ⎟ 
⎜ H21 H22 ... H2N ⎟ ⎜ ∫φ2 Hφ1 ∫φ2 Hφ2 ∫φ2 HφN ⎟H ≡ ≡
⎜ ... ... ... ... ⎟ ⎜ ⎟ 
⎜ ⎟ ⎜ ⎟ 
⎝ HN1 HN 2 ... H NN ⎠ ⎜

⎝ ∫φN
AO 

Ĥ φ1 
AO 
∫φN

AO 
Ĥ φ2 

AO 
∫φN

AO 
Ĥ φN

AO ⎟
⎠ 

⎛ ∫φ1 
AO φ1 

AO 
∫φ1 

AO φ2 
AO 

∫φ1 
AO φN

AO ⎞ 
⎛ S11 S12 ... S1N ⎞ ⎜ ⎟ 
⎜ ⎟ ⎜ AO AO AO AO AO AO ⎟ 
⎜ S21 S22 ... S2N ⎟ ⎜ ∫φ2 φ1 ∫φ2 φ2 ∫φ2 φN ⎟S ≡ ≡
⎜ ... ... ... ... ⎟ ⎜ ⎟ 
⎜ ⎟ ⎜ ⎟ 
⎝ SN1 SN 2 ... SNN ⎠ ⎜

⎝ ∫φN
AO φ1 

AO 
∫φN

AO φ2 
AO 

∫φN
AO φN

AO ⎟
⎠ 

This step is where much of the hard work is done in most MO 

calculations. Not only can the integrals between the different AO 
functions be very tricky to work out, there are a lot of them to be 
computed – N2 of them, to be exact! This hard work is best done in an 

automated fashion by a computer, and in practice we will usually give you 
explicit values for the matrix elements for this step. However, it is 
important for you to realize what the matrix elements mean. The 

diagonal elements of H represent the average energies of putting 
electrons in each AO and the off­diagonal terms tell us how strongly 
coupled one AO is to another. The diagonal elements of S are 

normalization integrals and the off­diagonal terms tell us how much 
spatial overlap there is between the different AOs 

3) Solve the generalized eigenvalue problem 
For every MO problem, the central step is determining the MOs, which 
always involves solving the generalized eigenvalue problem: 

α α
H c i = Eα S c i 

The eigenvalues from this equation are the MO energies. The 

eigenvectors are the coefficients of the molecular orbitals, written as 
sums of AOs: 

N


ψ α ( ) = ∑ci 
αφi

AO ( ) r
r 
i=1 

In general, we will obtain N molecular orbitals out of N atomic orbitals. 
This step is precisely the same as what we did for H2

+, just generalized 
to the N­orbital case. We note that for anything larger than a 2­by­2, it 
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is usually best to ask a computer to solve the generalized eigenvalue 
problem for you. 
4) Occupy the orbitals according to a stick diagram 

At this point, we must depart from the H2
+ model and begin to account 

for the fact that we have multiple electrons. To do so, we follow the 
prescription of the independent particle model and build a Slater 

determinant out of our orbitals. However, whereas for atoms we built 
the determinant out of atomic orbitals, for molecules we will build the 
determinant out of molecular orbitals: 

( ) 1 1ψ ↑ ( ) 1 1ψ ↓ ... ( ) 1Nψ ↓ 

Ψ ≡ 
( ) 1 2ψ ↑ ( ) 1 2ψ ↓ ... ( ) 2Nψ ↓ 

... ... ... ... 

( )1 
Nψ ↑ ( )1 

Nψ ↓ ... ( )N 
Nψ ↓ 

As was the case for atoms, it is much easier to reason in terms of stick 
diagrams, rather than write out all of the orbitals in determinant form. 

So, for example, we would associate a stick diagram like this 

ψ2 

ψ1 

with a determinant:


ψ 1 ψ 1 ψ 1 ψ 1 

1↑ ( ) 1↓ ( ) 2↑ ( ) 2↓ ( ) 

1↑ ( ) 1↓ ( ) 2↑ ( ) 2↓ ( ) 
ψ 2 ψ 2 ψ 2 ψ 2 

Ψ (1, 2,3, 4 ) ≡ 
1↑ ψ 1↓ 3 2↑ ( ) ψ 2↓ 3ψ ( ) 3 ( ) ψ 3 ( ) 
1↑ ( ) 1↓ ( ) 2↑ ( ) 2↓ ( ) ψ 4 ψ 4 ψ 4 ψ 4 

But all the information we would need is contained in the stick diagram 
and, of course, the MOs. 

5) Compute the energy 
There are a variety of ways to compute the energy once the MOs have 

been obtained. The simplest is to use the non­interacting particle picture 
we used for atoms. Here, the energy of N electrons is just given by the 
sum of the energies of the N orbitals that are occupied: 
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N 

E = ∑E
i 

i=1 

A more accurate way is to use the independent particle model to add 
an average electron­electron repulsion to the energy: 

N N 
E = Ĥ = ∑Ei +∑J� ij − K� ij 

i=1 i< j 

Where now the Coulomb and exchange integrals use molecular orbitals 
rather than atomic orbitals: 

Jij ≡ ∫∫ ψ i (1)ψ j (2) 
r − 

1 

r 
ψ i (1)ψ j (2) dr

1
dr

2
dσ

1
dσ

2 

1 2 

K� ij ≡ ∫∫ ψ i 
* (1)ψ * 

j (2) 
r − 

1 

r 
ψ i (2)ψ j (1) dr

1
dr

2
dσ

1
dσ

2 

1 2 

In fact, as we will see later on, there are even more elaborate ways to 
obtain the energy from an MO calculation. When we work things out 

by hand, the non­interacting picture is easiest and we will usually work 
in that approximation when dealing with MOs. 

Diatomic molecules 
As a first application of MO theory, it is useful to consider first­row 

diatomic molecules (B2, C2, N2,O2, CO,CN, NO, etc.), which actually map 
rather nicely on to an MO picture. We’ll go step­by step for the generic 
“AB” diatomic to show how this fits into the MO theory framework. 

1)	 Define a basis of atomic orbitals. To begin with, one would consider a 
set consisting of 10 atomic orbitals – 5 on A and 5 on B: 

ψ = c11sA + c21sB + c3 2sA + c4 2sB + c5 2 pzA + c6 2 pzB + c7 2 pyA + c8 2 pyB + c9 2 pxA + c10 2 pxB 

However, for all the diatomics above, the 1s orbitals on both atoms will 

be doubly occupied. Since we will primarily be interested in comparing the 
MO descriptions of different diatomics the eternally occupied 1s orbital 
will have no qualitative effect on our comparisons. It is therefore 

customary to remove the 1s orbitals from the expansion: 
ψ = c12sA + c2 2sB + c3 2 pzA + c4 2 pzB + c5 2 pyA + c6 2 pyB + c7 2 pxA + c8 2 pxB 

The latter approximation is referred to as the valence electron or 

frozen core approximation. The advantage is that it reduces the length 
of our vectors from 10 to 8. 
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2)	 Compute the Matrix Representations. Here, we have the rather 
daunting task of computing two 8­by­8 matrices. As mentioned above, we 
won’t be concerned in this class about filling in precise values for matrix 

elements here. However, we will be very interested in obtaining the 
proper shape of the matrix by determining which matrix elements are 
zero and which are not. The Hamiltonian takes the shape: 

s Hs s Hs s Hp s Hp s Hp s Hp s Hp s Hp ⎛ ∫	 A 
ˆ 

A ∫ A 
ˆ 

B ∫ A 
ˆ 

zA ∫ A 
ˆ 

zB ∫ A 
ˆ 

yA ∫ A 
ˆ 

yB ∫ A 
ˆ 

xA ∫ A 
ˆ 

xB 
⎞ 

⎜	 ⎟ 
⎜ ˆ s Hs ˆ s Hp s Hp ˆ s Hp s ˆ s Hp ˆ s ˆ ⎟ 
⎜ ∫ sB Hs A ∫ B B ∫ B 

ˆ 
zA ∫ B zB ∫ B 

ˆ 
yA ∫ B Hp yB ∫ B xA ∫ B Hp xB ⎟ 

⎜	 ⎟
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ⎜ ∫ pzA Hs A ∫ pzA Hs B ∫ pzA Hp zA ∫ pzA Hp zB ∫ pzA Hp yA ∫ pzA Hp yB ∫ pzA Hp xA ∫ pzA Hp xB ⎟ 

⎜	 ⎟ 
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ⎜ ∫ pzB Hs A ∫ pzB Hs B ∫ pzB Hp zA ∫ pzB Hp zB ∫ pzB Hp yA ∫ pzB Hp yB ∫ pzB Hp xA ∫ pzB Hp xB ⎟ 

H ≡ ⎜	 ⎟ 
ˆ⎜	 pyA Hs ˆ 

A pyA 
ˆ 

B pyA Hp zA pyA 
ˆ 

zB pyA Hp yA pyA 
ˆ 

yB pyA Hp xA pyA 
ˆ 

xB ⎜ ∫ ∫ Hs ∫ ˆ ∫ Hp ∫ ˆ ∫ Hp ∫ ∫ Hp ⎟
⎟ 

⎜	 ⎟ 
p Hs p Hs p Hp p Hp p Hp p Hp p Hp p Hp ⎜ ∫	 yB 

ˆ 
A ∫ yB 

ˆ 
B ∫ yB 

ˆ 
zA ∫ yB 

ˆ 
zB ∫ yB 

ˆ 
yA ∫ yB 

ˆ 
yB ∫ yB 

ˆ 
xA ∫ yB 

ˆ 
xB ⎟ 

⎜	 ⎟ 
Hs ˆ Hp ˆ Hp ˆ Hp ⎜ ∫ pxA Hs ˆ 

A ∫ pxA 
ˆ 

B ∫ pxA Hp zA ∫ pxA 
ˆ 

zB ∫ pxA Hp yA ∫ pxA 
ˆ 

yB ∫ pxA Hp xA ∫ pxA 
ˆ 

xB ⎟ 
⎜	 ⎟ 
⎜ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ⎟
⎝ ∫ pxB Hs A ∫ pxB Hs B ∫ pxB Hp zA ∫ pxB Hp zB ∫ pxB Hp yA ∫ pxB Hp yB ∫ pxB Hp xA ∫ pxB Hp xB ⎠ 

We assume, for simplicity, that the AB­bond

lies along the z­axis. Then it is relatively easy 

A B

y

to see that the molecule is symmetric upon


reflection around the x and y axes. As a

result, the Hamiltonian for AB is also z


symmetric (even) with respect to reflection


about x and y. Similarly, the s and p orbitals ­x


all have definite reflection symmetries:


Hamiltonian 
s 

pz 

py 

px 

X Reflection Y Reflection 
+ + 
+ + 

+ + 
+ ­

­ + 

Further, we note that if we perform an integral, if the integrand is odd


with respect to reflection about either x or y the integrand will be zero.
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This knocks out a bunch of integrals for us. For example, looking at

reflection about x:


∫ / 
Hp 

/ 
= (+)( + − = − ⇒ 0s

A B 
ˆ 

xA B )( ) 

∫ /
ˆ 

/ 
= (+)( +)( −) = − ⇒ 0p

zA B Hp 
xA B 

p
yA B / 

Hp 
/ 

= (+)( +)( −) = − ⇒ 0∫ ˆ 
xA B 

∫ / 
Hp 

/ 
= ( )( +)( −) = + ⇒ ≠ 0p

xA B 
ˆ 

xA B − 

We have analogous expressions for reflection about y zero several more


integrals. The result is that the Hamiltonian simplifies to


s Hs s Hs s Hp s Hp 0 0 0 0⎛ ∫ A 
ˆ 

A ∫ A 
ˆ 

B ∫ A 
ˆ 

zA ∫ A 
ˆ 

zB 
⎞ 

⎜ ⎟ 
⎜ ˆ Hs ˆ s Hp s ˆ 0 0 0 

⎟ 
⎜ ∫ sB Hs A ∫ sB B ∫ B 

ˆ 
zA ∫ B Hp zB 0 ⎟ 

⎜ ⎟
ˆ ˆ ˆ ˆ⎜ ∫ pzA Hs A ∫ pzA Hs B ∫ pzA Hp zA ∫ pzA Hp zB 0 0 0 0 ⎟ 

⎜ ⎟ 
⎜ ∫ pzB Hs ˆ 

A ∫ pzB 
ˆ 

B ∫ pzB Hp zA ∫ pzB 
ˆ 

zB 0 0 0 0Hs ˆ Hp ⎟ 
H ≡ ⎜ ⎟ 

0 0 0 0 p Hp p Hp 0 0⎜ ∫ yA 
ˆ 

yA ∫ yA 
ˆ 

yB 
⎟ 

⎜ ⎟ 
⎜ ⎟ 
⎜ 0 0 0 ∫ pyB Hp ˆ 

yA ∫ pyB 
ˆ 

yB 0 0 ⎟0 Hp 

⎜ ⎟
ˆ ˆ⎜ 0 0 0 0 0 0 ∫ pxA Hp xA ∫ pxA Hp xB ⎟ 

⎜ ⎟ 
⎜ 0 0 0 0 0 0 ∫ pxB Hp ˆ 

xA ∫ pxB 
ˆ 

xB ⎟⎝ 
Hp 

⎠ 

which we write: 
⎛ H11 H12 H13 H14 0 0 0 0 ⎞ 
⎜ ⎟ 
⎜ H21 H22 H23 H24 0 0 0 0 ⎟ 
⎜ H31 H32 H33 H34 0 0 0 0 ⎟ 
⎜ ⎟ 

H ≡ ⎜ 
H41 H42 H43 H44 0 0 0 0 ⎟ 
⎜ 0 0 0 0 H H 0 0 ⎟ 
⎜ 

55 56 
⎟ 

⎜ 0 0 0 0 H65 H66 0 0 ⎟ 
⎜ 0 0 0 0 0 0 H77 H78 

⎟ 
⎜ ⎟⎜ ⎟
⎝ 0 0 0 0 0 0 H87 H88 ⎠ 

It is easy to show that the overlap matrix has the same overall shape 
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⎛ S11 S12 S13 S14 0 0 0 0 ⎞ 
⎜ ⎟ 
⎜ S21 S22 S23 S24 0 0 0 0 ⎟ 
⎜ S31 S32 S33 S34 0 0 0 0 ⎟ 
⎜ ⎟ 
⎜ S41 S42 S43 S44 0 0 0 0 ⎟S ≡ 
⎜ 0 0 0 0 S S 0 0 ⎟ 
⎜ 

55 56 
⎟ 

⎜ 0 0 0 0 S65 S66 0 0 ⎟ 
⎜ 0 0 0 0 0 0 S77 S78 

⎟ 
⎜	 ⎟⎜ 0 0 0 0 0 0 S S ⎟
⎝	 87 88 ⎠ 

There are some additional symmetries in these matrices but the 
reflection symmetry properties are the most important. 

3)	 Solve the generalized eigenvalue problem. This part would be 
impossible if we hadn’t simplified our matrices above. However, with the 
simplifications, it is clear that our matrices are block diagonal. For 

example: 

sA sB pzA pzB pyA pyB pxA pxB 

⎛ H11 H12 H13 H14 0 0 0 0 ⎞ sA 

⎜	 ⎟ 
⎜ H21 H22 H23 H24 0 0 0 0 ⎟ 

sB 

⎜ H31 H32 H33 H34 0 0 0 0 ⎟ pzA 

⎜	 ⎟ 
⎜ H41 H42 H43 H44 0 0 0 0 ⎟ pzB 

H ≡ 
⎜	 0 0 0 0 H55 H56 0 0 ⎟ pyA 

⎜ ⎟ 
⎜	 0 0 0 0 H65 H66 0 0 ⎟ pyB 

77 78 

87 88 

⎟ 
⎟ 

H 
⎟
⎠ 

H 

H H 

pxA ⎜	 0 0 0 0 0 0 
⎜⎜ pxB ⎝	 0 0 0 0 0 0 

And similarly for the overlap matrix. The nice thing about block diagonal 
matrices is you can reduce a large eigenvalue to several smaller ones. In 

this case, our matrices break down into a 4­by­4 block (sA, sB, pzA, pzB) a 
2­by­2 block (pyA,pyB) and another 2­by­2 block (pxA,pxB). All the rest of 
the matrix is zero. As a result, we can decompose the above 8­by­8 into 

three separate eigenvalue problems: 
A) The first eigenvalue problem to be solved is a 4­by­4: 
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⎛ H H H H ⎞ ⎛ c1 
α ⎞ ⎛ S S S S ⎞ ⎛ c1 

α ⎞ 
⎜ 

11 12 13 14 

⎟ ⎜ α 
⎟ ⎜ 

11 12 13 14 

⎟ ⎜ α 
⎟ 

⎜ H21 H22 H23 H24 ⎟ ⎜ c2 ⎟ = Eα ⎜ S21 S22 S23 S24 ⎟ ⎜ c2 ⎟ 
⎜ H31 H32 H33 H34 ⎟ ⎜

⎜ 
c3 

α 
⎟
⎟ ⎜ S31 S32 S33 S34 ⎟ ⎜

⎜ 
c3 

α 
⎟
⎟ 

⎜ ⎟ ⎜ ⎟ 
⎝ H41 H42 H43 H44 ⎠ ⎜⎝ c4 

α ⎟
⎠ ⎝ S41 S42 S43 S44 ⎠ ⎜⎝ c4 

α ⎟
⎠ 

which will give us four molecular orbitals that can be written as linear 
combinations of the first four AOs (sA, sB, pzA, pzB) 

ψ α = c1 

α 2s
A + c2 

α 2s
B + c3 

α 2 p
zA + c4 

α 2 p
zB 

Because these orbitals are symmetric with respect to reflection about 
both x and y, they will look something like the H2

+ bonding and 
antibonding orbitals, and so they are referred to as σ­orbitals. For 

example, we can make the +/­ combinations of the 2s orbitals to 
obtain one bonding orbital and one antibonding: 

+ 

σ1­orbital 

σ1∗­orbital 
­

A B 

A B 

A B 

we can make the similar linear combinations of the 2pz orbitals to 
obtain: 

σ2∗­orbital 

A B 

A B 

A B 

+ 

σ2­orbital ­

where we label the upper orbital σ* because of the nodes between the 

nuclei, whereas the σ orbital has no nodes between the nuclei. Note 
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that these +/­ combinations are just to illustrate what the orbitals 

will look like; in order to get the actual molecular orbitals we would 
need to diagonalize the 4­by­4 and get the eigenvectors. However, if 
we do that for a molecule like N2 we actually get orbitals that look 

strikingly similar to the ones above: 

σ2
* 

σ2 

σ1
* 

σ1 

B) The second eigenvalue problem to be solved is a 2­by­2: 

⎛ H55 H56 ⎞ ⎛ c5 
α ⎞ 

α ⎛ S55 S56 ⎞ ⎛ c5 
α ⎞ 

⎜ ⎟ ⎜ ⎟ = E ⎜ ⎟ ⎜ ⎟ 
⎝ H65 H66 ⎠ ⎜⎝ c6 

α ⎟
⎠ ⎝ S65 S66 ⎠ ⎜⎝ c6 

α ⎟
⎠ 

which will give us two molecular orbitals that can be written as linear 

combinations of the next two AOs (pyA,pyB): 
ψ α = c5 

α 2 pyA + c6 

α 2 pyB 

These orbitals get “­“ signs upon reflection about y, so we designate 
them πy orbitals. We can again make the +/­ combinations to get an 
idea what these orbitals look like: 
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πy­orbital 

A B 

+ 

­
A B 

A B 

πy 
* ­orbital 

Here again, the use of +/­ combinations is only for illustration 

purposes. Unless we have a homonuclear diatomic, the coefficients 
will not be ±1. However, for a molecule like N2, the orbitals look 
strikingly similar again: 

πy 

πy 
* 

C) The last eigenvalue problem is also 2­by­2: 

⎛ H77 H78 ⎞ ⎛ c7 
α ⎞ 

α ⎛ S77 S78 ⎞ ⎛ c7 
α ⎞ 

⎜ ⎟ ⎜⎜ α 
⎟
⎟ 

= E ⎜ ⎟ ⎜⎜ α 
⎟
⎟⎝ H87 H88 ⎠ ⎝ c8 ⎠ ⎝ S87 S88 ⎠ ⎝ c8 ⎠ 

which will give us two molecular orbitals that can be written as linear 
combinations of the last two AOs (pxA,pxB): 

ψ α = c5 

α 2 p
xA + c6 

α 2 p
xB 

These orbitals get “­“ signs upon reflection about x, so we designate 
them πx orbitals. The qualitative picture of the πx orbitals is the same 
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as for the πy orbitals above, expect that the πx orbitals come out of 

the page. 
4) Occupy the orbitals based on a stick diagram. The most important 

thing here is to know the energetic ordering of the orbitals. This would 

come out of actually evaluating the non­zero matrix elements in matrices 
above and then solving the generalized eigenvalue problem, which is 
tedious to do by hand. As a general rule however, there are only two 

commonly found MO diagrams for diatomics: 
σ2∗ σ2∗ 

πx
*,πy

* πx
* ,πy

* 

σ2 

σ1 

σ1∗ 

σ2 

πx,πy
πx,πy 

σ1 

σ1∗ Versus 

Hence, the only question is whether the second σ­bonding orbital is above 
or below the π­bonding orbitals. In practice, the σ­orbital (which has 
significant pz character) is stabilized as you move from left to right along 

the periodic table, with the σ­orbital being less stable for atoms to the 
left of and including nitrogen and more stable for atoms to the right of 
N. Once we have the orbital energy diagram in hand, we can assign the 

electrons based on stick diagrams. For example, for CO we have 10 
valence electrons and we predict a stick diagram for the ground state 
like the one at left below .Meanwhile for NO, which has 11 valence 

electrons, we have the stick diagram shown on the right. 
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We note one important feature we get directly out of the stick 

diagrams: the highest occupied molecular orbital (HOMO) and the 
lowest unoccupied molecular orbital (LUMO). For example, in CO the 
HOMO is a π­bonding orbital, whereas the LUMO is a π* antibonding 

orbital. Meanwhile, for NO the HOMO and LUMO are both π* 
orbitals. These orbitals determine reactivity in a crude fashion, as 
when electrons are taken out of the molecule, they are removed from 

the HOMO, and when electrons are added, they are added to the 
LUMO. 

5) Compute the energy. Here we can say very little about diatomics, 

because we don’t even know the orbital energies exactly, making it 
difficult to predict the energies of the whole molecule. If we knew 

the orbital energies, the total energy for CO, for example, would be: 
ECO=2Eσ1+2Eσ1∗+2Eπx+2Eπy+2Eσ2 

As we don’t know these orbital energies, we cannot evaluate the 

accuracy of this independent electron model for diatomics. However, 
the bond order is a useful descriptor that correlates very well with 
the MO energy. For a diatomic, the bond order is simply: 

((# Bonding Electrons)­(# Antibonding Electrons))/2 
The factor of two reflects the requirement of two electrons for 
forming a bond. A higher bond order implies a stronger bond and a 

lower bond order a weaker bond. Thus, MO theory predicts CO will 
have a stronger bond (bond order 3) than NO (bond order 2.5), which 
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is experimentally verifiable: the bond energy in NO is 6.5 eV, while 

the bond energy in CO is 11.1 eV. 

There are a number of other successful predictions of MO theory for 

diatomics: O2 is correctly predicted to be a spin triplet ground state, CO is 
correctly predicted to be slightly more stable than N2, the highest occupied 
molecular orbital for C2 is predicted to be degenerate …. Overall, given its 

basis on the independent particle model, MO theory predicts a surprisingly 
large array of chemical features correctly. 


