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ANGULAR MOMENTUM 
Now that we have obtained the general eigenvalue relations for angular 
momentum directly from the operators, we want to learn about the associated 

wave functions. Returning to spherical polar coordinates, we recall that the 
angular momentum operators are given by: 

⎛ ∂ ∂ ⎞ 
L̂ 

x = − i� ⎜ − sin φ − cot θ cos φ ⎟
⎝ ∂θ ∂φ ⎠ 

⎛ ∂ ∂ ⎞ 
L̂ 

y = − i� ⎜ cos φ − cot θ sin φ ⎟
⎝ ∂θ ∂φ ⎠ 
∂ 

L̂ = − i� z 
∂φ 

2̂ ˆ2 ˆ2 ˆ2 2̂ 2 ⎡ 1 ∂ ⎛ ∂ ⎞ 1 ∂2 ⎤ 
L = L

x 
+ L

Y 
+ L

z 
⇒ L = − � ⎢ ⎜sin θ ⎟ + 

2 2 ⎥
⎣sin θ ∂θ ⎝ ∂θ ⎠ sin θ ∂φ ⎦ 

In terms of these, our original Schrödinger Equation for rigid rotations was 

m L̂
2 

m m
HY ˆ = Y = E Y l l l l

2I


−�2 ⎡ 1 ∂ ⎛ ∂ ⎞ 1 ∂2 ⎤ m m
+ Y , = E Y l ,⇒ ⎢ ⎜sin θ ⎟ 2 2 ⎥ l (θ φ ) l (θ φ )
2I ⎣sin θ ∂θ ⎝ ∂θ ⎠ sin θ ∂φ ⎦ 

where l was the quantum number for L̂
2 and m was the quantum number for L̂ 

z . 

Taking what we learned in the last section about the eigenvalues of L̂
2 and L̂ 

z 

we can say that at most we can have 
l = 0, 1

2
,1, 

2
3 ,2,... m = − l, −l +1,..., l 

We will see that there is an additional restriction on the possible values of l in 

the present case, but these are the possible values for the quantum numbers. In 
terms of the quantum numbers, we have the eigenvalue relations 

2̂ m 2 m 2 m
L Y l = L Y l = � l (l +1)Yl 

L̂ Y m = �mY m 

z l l 

Now, the functions, Yl
m , that satisfy these relations for rigid rotations are 

called Spherical Harmonics. It is possible to derive the spherical harmonics by 

solving the 2D differential equation above. McQuarrie goes through a fairly 
complete derivation and we outline that solution in the appendix to these notes 
(below). The result is that: 
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Yl

m (θ φ ) lm Pl 

m im φ 
,	 = A (cos θ ) e 

where A
lm

is a normalization constant and P
l

m ( x) is an associated Legendre 

Polynomial. The first few Associated Legendre Polynomials are: 

P
0 (cos θ ) = 1	 P1

0 (cos θ ) = cos θ0 

P
1 (cos θ ) = sin θ	 P

0 (cos θ ) = 1 (3cos 2 θ −1)1	 2 2 

P
1 (cos θ ) = 3cos θ sin θ P

2 (cos θ ) = 3sin 2 θ2	 2 

There are a number of important features of the Spherical Harmonics we can 
recognize simply by inspecting these solutions: 

• The wavefunctions factorize into a product of a function of θ and a 
function of φ.


Y
l

m (θ φ , ) ∝ f (θ ) g (φ )

This result is very reminiscent of the result we found for separable 
Hamiltonians, which is somewhat surprising because the Hamiltonian 
certainly did not appear at first sight to be separable into a Hamiltonian 

for θ and a Hamiltonian for φ: 

Ĥ =
−�2 

⎢
⎡ 1 ∂ 

⎜
⎛ 
sin θ

∂ 
⎟
⎞ 

+ 
1

2 

∂2

2 ⎥
⎤ 

≠ Ĥ 
θ + Ĥ 

φ
2I ⎣sin θ ∂θ ⎝ ∂θ ⎠ sin θ ∂φ ⎦ 

However, physically it makes some sense for the motion along θ and φ to 
separate: we haven’t applied any potential that links them together so 
particles should be free to move along θ and φ independently, just as 

particles in a separable potential in x and y can move independently along 
those axes. The θ ­φ cross terms above reflect the curvature of the 2D 
surface the particles are moving on. 

•	 It is easy to verify that these functions are eigenstates of L̂ 
z 
: 

m ∂ m ∂ m im φ m im φ m
L̂ Y = − i� Y = − i� A P (cos θ )e = �mA P (cos θ ) e = �mY 

z l l lm l lm l	 l
∂φ ∂φ 

They are also eigenfunctions of L̂
2 , as can be proven for any given Yl

m 

2̂ m(after some algebra) by computing L Y l and verifying that the result is 

just �2
l (l +1)Yl

m . 

•	 We can now see why half­integer values of l are not allowed here. Recall 
that φ is the angle in the x­y plane and it varies from 0 to 2π. What 

should happen to l

m ( , when φ → φ + πY θ φ ) 2 ? Of course, the value of the 

wavefunction should not change because by incrementing φ by 2π: we’ve 
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2φ φ π⇒ = im im im 
e e e 

just moved the particle around in a full circle. Thus, for the wave

function to be single­valued, we must have:


(θ φ ) = Y , + π )Yl

m , l

m (θ φ 2 

m

lm lP (cos θ )e
im (φ+2π )⇒ m

lm lPA (cos θ ) eim φ = A 

im φ im (φ+2π )⇒ e = e 

⇒ 1 = eim 2π 

⇒ m = an integer 

thus, m must be an integer, no matter what value of l we choose. However,

since the minimal value for m is l, l must also be an integer. This


continuity argument is the reason why half integer values of l are not

allowed for rigid rotations.


•	 Note that there are a few interesting algebraic features of the spherical 
harmonics: 1) the φ part of the wavefunction does not depend on l 2) The 
l
th order Legendre polynomial always involves sums of products of sines 

and cosines such that the sum of the sine and cosine powers is less than 
or equal to l 3) for m ≠ 0 the spherical Harmonics are complex and 

Yl
m* = Yl 

−m . Thus, one can obtain two real functions from each ±m pair via 

Rl
m = 1 (Y m + Yl 

−m ) Il
m = 1 (Yl

m − Yl 
−m )

2	 l i 2 

These features are helpful in trying to identify, when given an arbitrary 
function of the angles, which spherical harmonics might contribute to that 

function. 
•	 Typically, the spherical Harmonics are associated with letters as you have 

seen in your previous chemistry courses. Thus, l=0 is ‘s’, l=1 is ‘p’, l=2 is ‘d’ 
…. 

•	 In the absence of a potential, as is the case for rigid rotations, the 
spherical Harmonics are 2l+1-fold degenerate: 

l m Y 
l 

m 
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1 

−1 
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1 
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−1 
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0 
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As discussed previously, we should expect this degeneracy to be broken if 
we apply a potential that is not spherically symmetric. In the presence of 

a potential, we expect these levels to be split. 
Thus, to summarize, for the spherical Harmonics we have: 

( ) ( ), cos 
φθ φ θ= 

mm im 

l lm lY A P e 

( )2 2 2ˆ 1 0,1,2,3... = = + =�
m m m 

l l lL Y L Y l l Y l 

ˆ , 1,..., = = − − +�
m m 

z l lL Y mY m l l l 

APPENDIX: SOLVING FOR THE SPHERICAL HARMONICS

We need to solve the differential equation 

�
2 ⎡ 1 ∂ ⎛ ∂ ⎞ 1 ∂2 ⎤ 

− ⎢ ⎜sin θ ⎟ + 
2 2 ⎥Y (θ φ , ) = EY (θ φ , )

2I ⎣sin θ ∂θ ⎝ ∂θ ⎠ sin θ ∂φ ⎦ 
ˆThis is HY (θ φ , ) = EY (θ φ , ) for Rigid rotations. Rearranging the Equation, 

⎡ ∂ ⎛ ∂ ⎞ 2IE 2 ⎤ ∂2 

⎢sin θ ⎜sin θ ⎟ + 
2 

sin θ ⎥Y ( , ) = − 
2 

Y (θ φ )θ φ , 
⎣ ∂θ ⎝ ∂θ ⎠ � ⎦ ∂φ 

only θ only φ 

We’ve separated the variables, just as in the 3D harmonic oscillator. 

∴ Try Y (θ φ ) = Θ (θ )Φ (φ ), as a solution 

2IE 
Define β ≡ 

2 
(note β ∝ E ) 

⎡ ∂ ⎛ ∂ ⎞ 2 ⎤ ∂2 

⎢sin θ 
∂θ 

⎜sin θ 
∂θ 

⎟ + β ⎥ Θ( ) ( ) φ = − 
∂φ 2 

( ) Φ ( ) φsin θ θ Φ Θ θ 
⎣ ⎝ ⎠ ⎦ 

Dividing by Θ(θ )Φ (φ ) and simplifying 
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sin θ ∂ ⎛ ∂ ⎞ 2 1 ∂2 

Θ θ + β sin θ = − Φ φ⎜sin θ ⎟ ( ) ( ) 
Θ θ ∂θ ∂θ Φ φ ∂φ( ) ⎝ ⎠ ( ) 2 

only θ only φ 

Since θ and φ are independent variables, each side of the equation must be 

equal to a constant ≡ m2. 

1 ∂2
2 

⇒ φ = − Φ ( ) m 
Φ φ( ) ∂φ 2 

I 

sin θ ∂ ⎛ ∂ ⎞ 2 2and ⇒ ⎜sin θ ⎟ Θ( ) + sin θ mθ β = 
Θ( ) θ ⎝ ∂ ⎠θ ∂ θ 

II 

First solve for Φ (φ ) using I 

2∂ Φ (φ ) 
= − m 

2Φ φ( ) 
∂φ 2 

Solutions are Φ (φ ) = A e 
im φ and A e 

−im φ 
m −m 

Boundary conditions ⇒ quantization 

Φ (φ + 2π ) = Φ (φ ) 

im (φ+2π ) im φ −im (φ+2π ) −im φ 
⇒ A e = A e and A e = A e m m −m −m 

im (2π ) −im (2π )
∴ e = 1 and e = 1 

This is only true if m = 0, ±1, ± 2, ± 3,.... 

m is the “magnetic” quantum number 

∴ Φ (φ ) = A e im φ m = 0, ±1, ± 2, ± 3,.... m 



2π 
e m 

. Need to solve II 
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2π 

Normalization: Φ φ Φ φ dφ = 1∫ ∗ ( ) ( ) 
0 

⇒ Φ ( ) = 
1 im φ = 0, ±1, ± 2, φ ± 3,... 

Now let’s look at Θ(θ ) 
sin θ ∂ ∂ 

Θ( ) θ ⎝
⎜ 

∂θ ⎠
⎟ Θ( ) + sin θ m 

⎛
sin θ 

⎞ 
θ β 2 = 2 

θ ∂ 

dx 
Change variables: x = cos θ Θ( ) θ = P ( ) x = dθ 

−sin θ 

Since 0 ≤ θ ≤ π ⇒ −1 ≤ x ≤ + 1 

Also sin 2 θ = 1− cos 2 θ = 1− x 
2 

This equation turns out to be Legendre’s equation in terms of Θ: 

sin θ 
d 
⎢
⎡ 
sin θ 

dΘ 
⎥
⎤ 
+ (β sin 2 θ − m 2 )Θ( ) θ = 0 

dθ ⎣ dθ ⎦ 

which we can re­write: 

d2Θ dΘ 
sin 2 θ 

dθ 2 
+ sin θ cos θ 

dθ 
+ (β sin 2 θ − m 2 )Θ θ( ) = 0 

Let x = cosθ and Θ(θ)= P(x). 

dΘ
= 

dP dx 
= − sin θ 

dP 
= − (1− x 2 )

1 2 

1 2 

dP 

dθ dx d θ dx dx 

d2Θ
= 

d ⎡
⎢ 
dΘ⎤

⎥ = 
⎡
⎢ 

dx ⎤
⎥ 

d ⎡
⎢−(1− x 2 ) dP 

⎥
⎤ 

dθ 2 dθ ⎣ dθ ⎦ ⎣ dθ ⎦ dx ⎣ dx ⎦ 

⎡ ⎤ 
2⎢ x dP d P ⎥ 

= − sin θ ⎢ 
2 

1 2 dx 
− (1− x 2 )

1 2 

dx 2 ⎥ 
⎢ (1− x ) ⎥ 
⎣ ⎦ 

2 

= − x 
dP 

+ (1− x 2 ) d P 
2dx dx 

Substituting these results into Legendre’s equation gives 
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1− x 2 d P 
− 2x 1− x 2 dP 

+ β 1− x 2 − m 2 P ( ) = 0( )
2 

dx 

2

2 ( ) 
dx ( ( ) ) x 

Divide by (1− x 
2 ) to obtain the Legendre equation in a convenient form: 

2 2 

(1− x 2 ) d P 
− 2x 

dP 
+ 
⎡ 
β − 

m ⎤ 
P x = 0⎢ ⎥ ( ) 

dx 2 dx ⎢⎣ 1− x 2 
⎥⎦ 

The solutions to this equation are known, but very messy. They are called the 

associated Legendre polynomials, Pl

m ( ) x . Note that they only depend on |m| 

because the equation depends on m2: 
m m 

P
l (x)= P

l ( )cosθ 

0 0
P (cosθ)= 1 P (cosθ)= 

1 (3cos2 θ − 1)0 2 2 
0 1

P (cosθ)= cosθ P (cosθ)= 3cosθ sinθ 
1 2 

P
1 (cosθ)= sinθ P

2 (cosθ)= 3sin2 θ 
1 2 

etc. 

1 

2 

m 
⎡⎛ 2l + 1⎞ (l − m )!⎤ 

So Θ θ A
lm l (cosθ) A

lm 
= ⎢⎜ ⎟ ⎥ 
⎢⎝ 2 ⎠ l + m )!⎥⎦ 

( )= P 

⎣ ( 

where A is the normalization constant 
lm 

2 
2 

π 
⎡⇒ A

lm ∫ P
l 

m (cosθ)⎤ sinθdθ = 1 
0 ⎣ ⎦ 

So now putting it all together: 

ψ 
lm (r 

0
,θ ,φ)= Y

l

m (θ ,φ)= Θ 
l

m (θ)Φ 
m (φ) 

1 

2 

Y
l

m (θ ,φ)= ⎢
⎡

⎜
⎛ 2l + 1 

⎟
⎞ (l − m )!⎤ 

P cosθ 
⎢⎝ 4π ⎠ (l + m )!⎥⎦

⎥ 
l

m ( )e
imφ 

⎣ 
These functions are the spherical harmonics. 
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SPHERICAL HARMONICS SUMMARY 

Y
m (θ ,φ)= Θ 

m (θ)Φ (φ)l l m 

1 

2⎡⎛ 2l + 1⎞ (l − m )!⎤ mm
Y

l (θ ,φ)= 
⎢
⎢
⎝⎜ 4π ⎠⎟ (l + m )! 

⎥
⎥
⎦ 

P
l (cosθ)e

imφ 

⎣ 
l = 0, 1, 2,... m = 0, ± 1, ± 2, ± 3,... ± l 

m
Y

l 
’s are the eigenfunctions to Ĥψ = Eψ for the rigid rotor problem. 

1 

1 ⎛ 5 ⎞2 

Y 
0 = Y2

0 = ⎜ ⎟ (3cos 2 θ −1)0 1 2 

(4π ) ⎝ 16 π ⎠ 
1 1 

2 2 
0 ⎛ 3 ⎞ ±1 ⎛ 15 ⎞ ±iφ

Y1 = ⎜ ⎟ cos θ Y2 = ⎜ ⎟ sin θ cos θ e 
⎝ 4π ⎠ ⎝ 8π ⎠ 

1 1 

Y 
1 = 

⎛ 3 ⎞2 
iφ ±2 ⎛ 15 ⎞2

2 ±2iφ 
1 ⎜ ⎟ sin θ e Y2 = ⎜ ⎟ sin θe 

⎝ 8π ⎠ ⎝ 32 π ⎠ 
1 

2
−1 ⎛ 3 ⎞ −iφ

Y1 = ⎜ ⎟ sin θ e 
⎝ 8π ⎠ 

Y
l

m ’s are orthonormal: ∫∫Y
l

m

′ 

′∗ (θ ,φ)Yl

m (θ ,φ)sinθdθdφ = δ 
ll ′

δ 
mm′ 

⎧1 if l = l′ ⎧1 if m = m′ normalization 
Krönecker delta δ 

ll ′
= ⎨ δ 

mm′
= ⎨ 

⎩0 if l ≠ l ′ ⎩0 if m ≠ m′ orthogonality 

Note: Switch l → J conventional for molecular rotational quantum number 

(e.g.: l (l +1) ⇒ J ( J +1) J = 0, 1, 2,... .) 


