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QUANTUM IN : SEPARABLE SYSTEMS 

1D Systems 3D Systems 

x̂ r̂ = ( x̂ ŷ ẑ ) = i x̂ + j ŷ + k ẑ 

� d � � ∂ � � ∂ � � ∂ 
+ j + kp̂ = 

i dx 
p̂ = ( p̂ x p̂ y p̂ z ) = i 

i ∂x i ∂y i ∂y 

⎡ x̂, p̂⎤ i� ⎡ ⎤ ⎡ ⎤⎣ ⎦ = ⎡⎣ x̂, p̂ x ⎤⎦ = i� 
⎣
y p ˆ, ˆ y ⎦ = i� ⎣ẑ, p̂ z ⎦ = i� 

ˆ p̂2 −�2 d2
ˆ p̂2 −�2 ∂2 −�2 ∂2 −�2 ∂2 

T = = T = = + + 
2m 2m dx 2 2m 2m ∂x 2 2m ∂y 2 2m ∂y 2 

ψ ( x ) ψ ( x y z , , ) 

Ô = ∫ψ * ( x )Ô ψ ( x ) dx Ô = ∫ψ * ( x y z , , )Ô ψ ( x y z , , ) dx dy dz 

By fiat, operators corresponding to different axes commute with one another. 
ˆ ˆ = ˆ ˆ p y ˆ = yp p p ˆ = ˆ ˆ etc .xy yx ˆ ˆ ˆ ˆ p p z z z x x z 

Further, operators in one variable have no effect on functions of another: 

xf ˆ ( y) = f ( y) ˆ p f ( x) = f ( x) ˆ f * (z) p = ˆ * ( )x ˆ z pz ˆ x px f z etc . 

The Time Independent Schrödinger Equation becomes: 

⎡ �2 ⎛ ∂2 ∂2 ∂2 ⎞ ⎤

⎢− ⎜ 2 

+ 
2 

+ 
2 ⎟ +V ( x̂, ŷ, ẑ)⎥ψ ( x, y, z) = Eψ ( x, y, z)


⎣ 2m ⎝ ∂x ∂y ∂z ⎠ ⎦ 

∇2 the Laplacian 

⎡ �2
2 ⎤ 

⇒ ⎢− ∇ +V ( x̂, ŷ, ẑ)⎥ψ ( x, y, z) = Eψ ( x, y, z)
⎣ 2m ⎦ 

Ĥ = − 
�

2 

∇2 +V ( x̂, ˆ, ˆ)y z Hamiltonian operator in 3D 
2m 

ˆ ( , y z , ) = ψ ( x, , ) 3D Schrödinger equation Hψ x E y z 

(Time Independent) 
Separation of variables 
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IF V ( x̂, ŷ, ẑ) = V
x ( x̂) +V

y ( ŷ ) +V
z ( ẑ) 

⎡ �2 ∂2 ⎤ ⎡ �2 ∂2 ⎤ ⎡ �2 ∂2 ⎤
( ) ⎢ 2 x ( ) ⎥ ⎢ 2 y ( ) ⎥ ⎢ 2 z ( ) ⎥ˆ , − x y + − +V ˆH x, y z = +V ˆ + − +V ˆ z 

then ⎣ 2m ∂x ⎦ ⎣ 2m ∂y ⎦ ⎣ 2m ∂z ⎦ 

= Ĥ + Ĥ + Ĥ 
x y z 

⇒ Schrödinger’s Eq. becomes: 

⎡Ĥ + Ĥ + Ĥ ⎤ψ x, y, z = Eψ x, ,⎣ x y z ⎦ ( ) ( y z ) 

Then try solution of form ψ (x, y, z )= ψ 
x (x)ψ 

y (y )ψ 
z (z ) 

(separation of variables) 
Where we assume that the 1D functions satisfy the appropriate 1D TISE: 

Ĥ ψ ( x) = E ψ ( x)x x x x 

Ĥ 
y ψ y ( y ) = Ey ψ y ( y )


Ĥ ψ ( z) = E ψ ( z)
z z z z 

First term: 

Ĥ 
x ψ x ( x)ψ y ( y )ψ z ( z) =ψ y ( y )ψ z ( z) Ĥ 

x ψ x ( x) =ψ y ( y )ψ z ( z) Ex ψ x ( x) 

E ψ ( ) ( ) ψ z= x x x ψ y y z ( ) 

Same for Ĥ and Ĥ ⇒ y z 

Ĥ ψ = E ψ 

⎣H x + H y + H z ⎦ ⎣ψ x ( x)ψ y ( y)ψ z ( z)⎦ = ( Ex + Ey + Ez ) ⎣ψ x ( x)ψ y ( y )ψ z ( z )⎦⎡ ˆ ˆ ˆ ⎤ ⎡ ⎤ ⎡ ⎤ 

E = E + E + E 
x y z 

Thus, if the Hamiltonian has this special form, the eigenfunctions of the 3D 
Hamiltonian are just products of the eigenfunctions of the 1D Hamiltonian and 

the situation is equivalent to doing three separate 1D problems. 

Conclusion: Wavefunctions multiply and the energies add if Ĥ is separable into 
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Ĥ = Ĥ + Ĥ + Ĥ . x y z 

The 3D product states are naturally normalized if the 1D wavefunctions are 

normalized: 

ψ x ψ y ψ z ψ x ψ y ψ z dx dy dz = 

∫ x 
* ( ) x ( ) ∫ y 

* ( ) y ( ) ∫ z 
* ( ) z ( ) 

∫∫∫ x 
* ( ) y 

* ( ) z 
* ( ) x ( ) y ( ) z ( ) 

ψ x ψ x dx ψ y ψ y dy ψ z ψ z dz = 1 

1 x 1 x 1 

Notice that for ψ we are free to choose any eigenfunction, ψ n , of Ĥ 
xx 

together with any eigenfunction, ψ ny 
,of Ĥ 

y and any eigenfunction, ψ nz
, of Ĥ 

z . 

Thus, while in 1D we usually had one quantum number, in 3D we will have three 

(nx,ny,nz). Further, for two product states to be orthogonal, we do not have to 
have all three 1D functions be different. If any one of the three 1D 

wavefunctions (x,y or z) is orthogonal to its counterpart, then the two 3D 
wavefunctions are also orthogonal. For example, consider the two wavefunctions 

ψ111 ( , , ) =ψ x1 ( x)ψ y1 ( y)ψ z1 (z) and ψ 311 ( x y z ) =ψ x3 ( x)ψ y1 ( y) z1 ( )x y z , , ψ z . 

∫∫∫ ψ111 
* ( x, y z , )ψ 311 ( , , ) dx dy dz x y z 

⇒ ψ * * 
y ψ * ( ) x ψ ( ) z∫∫∫ x1 ( ) x ψ y1 ( ) z1 z ψ x3 ( ) y1 y ψ z1 ( ) dx dy dz 

⇒ ψ ( ) x ψ ( ) x dx ψ y ( ) dy ψ ( ) ( ) z∫ x1
* 

x3 ∫ y1
* ( ) ψ y1 y ∫ z1

* 
z ψ z1 dz = 0 

0 x 1 x 1 

Because the product states are orthogonal and normalized, they’re orthonormal 
and we summarize this by writing: 

ψn n n 
* ( , , )ψm m m ( , , ) =δn ,m δn ,m δn ,m∫∫∫ x y z

x y z 
x y z

x y z dx dy dz 
x x y y z z 

Example 1:3­D Harmonic Oscillator 

Let’s consider a particle in 3D subject to a Harmonic potential in x,y and z. 
Further, assume the force constants in each direction are different. This might 
be true, for example, for a particle trapped inside a protein: the resorting force 

for moving it in the x direction will be different from y or z because the protein 
has a different shape along x than y or z (see below right). Multidimensional 
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Harmonic potentials are also important for describing the vibrations of 
polyatomic molecules. For example, in HCO x might correspond to the CH 

stretch, y to the C­O stretch and z to the H­C­O bend. 

In either case, the general potential is given by 

V x, y, z = k x + k y + k z = V x +V y +V z( ) 
1 

x 

2 1 
y 

2 1 2 

x ( ) y ( ) z ( ) z
2 2 2 

Now, because the potential is a 

sum of an x potential, a y 
potential and a z potential, we 

can easily write the 
Hamiltonian down as a sum: 

Ĥ = Ĥ + Ĥ + Ĥ 
x y z 

p̂ 
x 

2 1 2
Ĥ = + k x̂ 

x x 
2m 2


ˆ 
p̂ 

y 

2
1 2


H = + k ŷ 
y y

2m 2 

Ĥ = 
p̂ 

z 

2 

+ 
1 

k z ˆ2 

z z 
2m 2 

where each 1D Hamiltonian describes a particle subject to a Harmonic potential 
with the appropriate spring constant (kx, ky or kz). Based on the discussion 
above, we can immediately write down all the eigenfunctions and eigenvalues: 

1 

−
αxx 2 

−
α y y 

2 

⎛ α ⎞4 −
αzz 2 

n n x yn ( x, , ) = N H x nx 
(α x 

1/2 
x) e 2 N H y ny 

(α y 

1/2 
y ) e 2 

⎜ 
z 
⎟ z nz 

( z 

1/2 ) 2ψ y z N H α z e 
z ⎝ π ⎠ 

⎡⎛ 1 ⎞ ⎤ ⎡⎛ 1 ⎞ ⎤ ⎡⎛ 1 ⎞ ⎤ 
E

x nz 
= ⎜ nx + ⎟ �ω x + ⎢ ny + ⎟ �ω y ⎥ + ⎢⎜ nx + ⎟ �ω zn n y 

⎣
⎢
⎝ 2 ⎠ ⎦

⎥ 
⎣⎝
⎜ 

2 ⎠ ⎦ ⎣⎝ 2 ⎠ ⎦
⎥ 

(mk x )
1 2 

kxα = ω = etc. x x 
� m 

Notice again that for the 3D problem we have 3 quantum numbers, and the 
energy and wavefunction depend on all three simultaneously. 

Degeneracies 
In 3D, there are a number of interesting things that can happen that we didn’t 
see in 1D. One example of this is that, in 3D it is possible for two different 
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eigenfunctions of the Hamiltonian to have the same energy. When this happens, 
these two states are called degenerate. If there are three, four… states with 

the same energy, they are said to be threefold, fourfold … degenerate. This 
never happened for the Particle in a Box or the Harmonic Oscillator. In fact, 
one can show that for bound states in 1D, one never has degeneracy; every state 

has its own energy. However, in 3D we can find degeneracy very easily. For 
example, if our spring constants are all the same: 

k = k = k ≡ k ⇒ ω = ω = ω ≡ ω 
x y z x y z 

⎛ 3 ⎞ 
⇒ En n n = �ω ⎜ nx + ny + nz + ⎟x y z ⎝ 2 ⎠ 

The ground state has an energy E000 = 
2
3 �ω . There is only one way I can get this 

energy ( nx = 0, ny = 0, nz = 0 ), so it is not degenerate. However, there are three 

ways I can get the first excited state energy 5
2 
�ω : nx = 1, ny = 0, nz = 0 , 

nx = 0, ny = 1, nz = 0 or nx = 0, ny = 0, nz = 1. So we find that if we choose all the 

spring constants to be equal, 
3�ω 

E000 = nondegenerate level 
2 

5�ω 
E100 = E010 = E001 = 3-fold degenerate level 

2 
etc. 

We will typically draw this with a picture like: 

E
… 

E110 E011 E101 E200 E020 E002 
6­fold degenerate 

E100 E010 E001 
3­fold degenerate 

E000 
Non­degenerate 

Note the wavefunctions are distinct: 

ψ100 ( x, , ) ≠ψ 010 ( x, y z , ) ≠ψ 001 ( x, y, )y z z 

This leads to an interesting effect. Suppose we make up a wavefunction that is 
a sum of two degenerate states, say 

ψ ( x, y, z) = a ψ 010 x, , ) + bψ 001 x, y, z )( y z ( 
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where a and b are constants. Then it turns out that ψ is also an eigenstate of 
the Hamiltonian! To see this, 

Ĥψ = Ĥ (a ψ + bψ ) = a H ˆψ + b H ˆψ010 001 010 001 

= a 5� 
2 
ωψ 010 + b 5� 

2 
ωψ 001 = 5� 

2 
ω (a ψ 010 + bψ 001 ) 

= 5�ωψ
2 

This illustrates the important point that any sum of degenerate eigenstates is 
also an eigenstate of the Hamiltonian with the same eigenvalue. 

Setting the spring constants equal amounts to assuming the well is symmetric 
with respect to x, y and z. If the symmetry is “broken”, i.e. kx ≠ ky ≠ kz then 

the 100, 010 and 001 states will become non­degenerate. In this case, we will 

usually say that the degeneracy has been “lifted” or that the degenerate states 
have been split. The latter language comes from the pictorial view; if the spring 
constants are only slightly different, then the energy levels might look like: 

E 

E000 

E010 
E100 

E001 

E011 
E110 E101 

E200 
E020 E002 

Here, you can see that the n=1 levels are almost degenerate (they’ve been 
“split”) and the n=2 levels are almost degenerate, but not quite, because the 

force constants are slightly different. Notice that it is possible to break some 
degeneracies but keep others. For example , if we choose: 

k = k ≡ k ≠ k ⇒ ω = ω ≡ ω ≠ ω 
x y z x y z 

Then the energies become: 

En n n = �ω (nx + ny +1) + �ω z ⎜
⎛ 

nz + 
1 
⎟
⎞ 

x y z ⎝ 2 ⎠ 
and we find 
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1

E000 = �ω+ �ω z nondegenerate level 

2


1

E100 = E010 = 2�ω+ �ω z 2-fold degenerate level 

2


3

E001 = �ω+ �ω z nondegenerate level 

2 
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Example 2: Particle in 3­D box 

x 

z 

y 
ba 

c V ( x, y, z) = Vx ( x) +Vy ( y ) +Vz ( z) 

V ( ) = 0 0 ≤ x ≤x a x 

Vy ( ) y = 0 0 ≤ y ≤ b 

V ( ) z = 0 0 ≤ z ≤ c z 

V x ,V y ,V z = ∞ otherwise x ( ) y ( ) z ( ) 

Inside the box: Outside the box: 

− 
�

2 ⎛
⎜ 

∂2

2 
+

∂2

2 
+

∂2

2 

⎞
⎟ψ ( x, y, z) = Eψ ( x, y, z) ψ (x, y, z)= 0 

2m ⎝ ∂x ∂y ∂z ⎠ 

We can again apply separation of variables since Ĥ = Ĥ 
x + Ĥ 

y + Ĥ 
z where 

Ĥ 
x , Ĥ 

y , Ĥ 
z are each 1D particle in a box Hamiltonians. So the solutions to the 

3D equation are products of the 1D solutions 

⇒ ψ ( x , y , z ) = ψ 
x 
( x )ψ 

y 
( y )ψ 

z 
( z )n n n 

where from the 1D problem we have the solutions 
1 

⎛ 2 ⎞2 ⎛ nx π x ⎞ �
2 

nx 

2 

ψ nx 
( ) x = ⎜ ⎟ sin ⎜ ⎟ nx = 1,2,3,... En = 

2x⎝ a ⎠ ⎝ a ⎠ 8m a 

1 

⎛ 2 ⎞2 ⎛ ny π y ⎞ �
2 n 

2 

yψ ny 
( ) y = ⎜ ⎟ sin ⎜ ⎟ ny = 1,2,3,... En = 

2y⎝ b ⎠ ⎝ b ⎠ 8m b 

1 

ψ nz 
( ) z = ⎜

⎛ 2 
⎟
⎞2 

sin ⎜
⎛ nz π z 

⎟
⎞ 

nz = 1,2,3,... Enz 
= 
�

2 
n 

2 

z 

2 

⎝ c ⎠ ⎝ c ⎠ 8m c 

Where the energy is now a function of all three Quantum numbers: 
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�
2 ⎛ n 

2 n 
2 

n 
2 ⎞ 

En n n = E + En + E = ⎜⎜
x + 

y 
+ 

2 

z 
⎟⎟x y z nx y nz 8m ⎝ a 

2 
b

2 
c ⎠ 

Degeneracies 

Degeneracies occur in a similar fashion for the PiB. e.g. if a = b = c in our 3­D 
box: 

⇒ E = 
h

2 

(n 
2 + n 

2 + n 
2 )n n xx ynz 2 y z 

8ma 

3h
2 

E111 = 
2 

is nondegenerate 
8ma 

1 

2 

ψ111 ( x, y, z) =ψ1 x ψ1 ( ) 1 

⎛ 8
3 ⎟
⎞ 

⎜
⎛ π x 

⎟
⎞ 

⎜
⎛ π y 

⎟
⎞ 

⎜
⎛ π z 

⎟
⎞( ) y ψ ( )z = ⎜ sin sin sin 

⎝ a ⎠ ⎝ a ⎠ ⎝ a ⎠ ⎝ a ⎠ 

But… 

E = E = E = 
h

2 

(22 +12 +12 ) 3­fold degeneracy211 121 112 2
8ma 

Note the wavefunctions are again distinct: 

ψ (x, y, z)≠ ψ (x, y, z)≠ ψ (x, y, z)211 121 112 

E 

E222 Non­degenerate 

E221 E212 E122 
3­fold degenerate 

E211 E121 E112 

Non­degenerate 
E111 
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If the symmetry is “broken”, i.e. a ≠ b ≠ c then the degeneracy is lifted. 

h
2 
⎛ 1 1 4 ⎞ h

2 
⎛ 1 4 1 ⎞ 

E112 = ⎜ 2 
+ 

2 
+ 

2 ⎟ ≠ E121 = ⎜ 2 
+ 

2 
+ 

2 ⎟8m ⎝ a b c ⎠ 8m ⎝ a b c ⎠ 

Summary 
3­D box 

1 

⎛ 8 ⎞2 ⎛ nx π x ⎞ ⎛ ny π y ⎞ ⎛ nz π z ⎞
ψ n n n ( x, , ) = ⎜ ⎟ sin ⎜ ⎟sin ⎜ ⎟ ⎜ ⎟y z sin 

x y z ⎝ abc ⎠ ⎝ a ⎠ ⎝ b ⎠ ⎝ c ⎠ 

h
2 ⎛ n 

2 n 
2 

n 
2 ⎞ 

+ ⎟⎟ n = 1,2,3,... n = 1,2,3,... n = 1,2,3,... n n n x y z E 
x y z 

= ⎜⎜
x 

2 
+ 

2 

y 

2 

z 

8m ⎝ a b c ⎠ 


