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Ehrenfest’s Theroem 

In the lecture notes for the harmonic oscillator we derived the 
expressions for x̂ (t)  and (t) using standard approaches – integrals 
involving Hermite polynomials (see pages 17 and 18, Lecture Summary 12-15). 
The calculations are algebraically intensive, but showed that 
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The issue considered here is an approach to calculate x (t)  and p (t) in a 
more straightforward manner. 

Classically, (we use m instead of µ since we are dealing with a free 
particle) 

dxp = mv = m 
dt 

So, quantum mechanically we might expect 

p (t) = m 
d x (t) 
dt 

.


But, is this expression valid ? We can show that in fact it is with the 
following argument. 

d x (t) 
dt

For our original expression was … 
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Recall the time dependent Schrödinger equation is 

∂ψ ∂ψ 1
i! = Hψ or = Hψ

∂t ∂t i! 
Inserting these results into the expression above yields 
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Evaluating the commutator (assuming that H is the HO Hamiltonian) we find 
… 
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Which is the result that is desired 

p̂x (t) = µ 
d x (t) 
dt 

Thus, we can now obtain (t) without the lengthy calculation contained inp̂x 
the HO lecture notes. 
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which is the result with which we started initially. 

The equations above are a specific illustration of a more general 
result due to Paul Ehrenfest (an Austrian physicst who later resided in 
Leiden, The Netherlands) and known as Ehrenfest’s Theorem. In particular, 
for any dynamical variable F 
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d F (t) 
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For further information see McQuarrie Problems 4-43 and 4-44, p 187-188. 


