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Harmonic Oscillator Energies and Wavefunctions
via Raising and Lowering Operators

We can rearrange the Schradinger equation for the HO into an interesting form ...
L{(hdY 21, S
_I:(;E) +(max) }//—%[p + (maox) }l// =FEy

2m

with
which has the same form as

We now define two operators

(Fip + ma)x)

N}
Il

2hmo

that operate on the test function f(x) to yield

1

(@a) 1) =( o mox)cip o) ()

2hmo

1

- 2hmo

|:p2 - (ma)x)2 —imo (xp — px)]f(x)

2hmw

- {#(p2 + (ma)x)z)— i[xap]}f(x)

1 1
aa, = —(p2 +(mcox)2)+— =—H+—
2hm 2

Which leads to a new form of the Schrodinger equation in ferms of a. and a. ...

Hy = ha)(a_a+ —%)qf

If we reverse the order of the operators-- a a, = a,a_-- we obtain ...
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Hy = ha)(a+a_ +%)qf

or

hw(aia+ + %)y/ =Ey

and the interesting relation
aa,—a.a = [a7a+] =1

A CLAIM: If ysatisfies the Schrodinger equation with energy E, then a.y
satisfies it with energy (E+ho ) |

H(a,w)= ha)(a+a_ +%)(a+l//)= ha)(a+a_a+ +%a+)l//

=hwa, (aot+ + %)y/ =a, {hw(aﬂ +1+ %jl//} =a, {ha)(a+a + %j + hw}y/

=a,(H+ho)y =(E+ho)(a,y)

H(a,y)=(E+ho)(a,y)
Likewise, a_y satisfies the Schrodinger equation with energy (E-7nm ) ...

H(a_l,l/) = hw(a_cu - %)(a_l//) = ha)(a_a+a_ - %a_)q/ = Cl_ha)(a+a_ — %)1//

0 {m(m —1—%)y/}=a(H—ha))w:a(E—ha))t//

H(a.y)=(E-ho)(ay)

So, these are operators connecting states and if we can find one state then we can
use them to generate other wavefunctions and energies. In the parlance of the

trade the a. are known as LADDER operators or
a. = RAISING and a. = LOWERING operators.

We know there is a bottom rung on the ladder Yp so that

ay,=0
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1 d
h— + mox =0
2hm ( dx )%

Integrating this equation yields

a0
dy, mow . mo
jw—o——7 xdx = lnl/lo——Z—hx +A0
_mo 2 1
v,(x)=Ae ? |and |E, =5hw

Eo comes from plugging ¥/ into HY = EY/ . We will perform the normalization
below.

Now that we are firmly planted on the bottom rung of the ladder, we can
utilize @, repeatedly to obtain other wavefunctions, ¥, , and energies, E.. That is,

ma X2

l/jn (X):An (a+ )n e_ 2h ) Wlfh E” =(I’l+%]hw

Thus, for y;we obtain

1

1
7 7m0
()= (2] (20

rh h

where you still have to determine the normalization constant A;.



5.61 Fall 2007 12-15 Lecture Supplement Page 4

Algebraic Normalization of the Wavefunctions: We can perform the normalization
algebraically. We know that

a+l/jn = Cnl//n+1 a—l)Un = dnl//n—l

What are the proportionality factors ¢, and d,? For any functions f(x) and g(x)
[~ Flaogdx=[" (apf)gax

here a_ is the Hermitian conjugate of a,

Proof:
IN farg)dx= ;lr f*(¥hi+ mwx]g dx
-t Qhmw)"* I dx
recall that
a, = ;[ﬂp + mwx] = ;{$z(ﬁi) + mwx} = ;[ﬂ%i + mwx}
* Qhmw)”? Qhmw)"? i dx Qumw)”* | dx

Integrate by parts

dx = J.:Kihi + mwxjf} gdx = J-_c:(axf)*g dx

dx

J.f( (a.8) dx = (2himw)

So we can write

We now use

%jy/”:Enwn and En:(n+l)hw

1 1
aa t— |y, =|n+=
( +— 2)1//,' [Vl 2)‘//11

a.a.y,=ny,|

+
ha)(aia:L +

and therefore

And

hw(a_a+ - %)% = hw(n + %jy/n
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a_a,y,=(n+1)y,

We can now calculate c,:

de= | (a_a,y,)*w,dx=(n+1)| oy, dx

[~ @)@, =, |

c,=vn+1

The calculation for d, proceeds in a similar manner :

[ @y @y, dx=|d,? Ldx=](aay,) vde=n| iy, dx

d, =vn

Thus we obtain the two normalization constants for the a,

12
ay, = (I’L + 1) Vi ay,= n'? Vo

HO Woavefunctions: Rearranging the equations to a slightly more useful form yields

1
l//n+l = 1/2 a+l//n I//n—l = Wa—l//n

(n+1)

We can now use these equations to generate other wavefunctions. Thus, if we start
with y, we obtain:

1
7z Ay, =AY,

(0 1)

n=1 \/— a.y, _T( +)2V/0
/— /— +l//0

Y, :ﬁaﬂlls :ﬁaﬂllo

n=0 Y, =

So that v, is
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Orthogonality of the HO Wavefunctions: Recall the orthogonality condition for
two wave functions is

[ wiw,.dx=6,,

Using the a, operators we can show this condition also holds for the HO

wavefunctions. The proof is as follows.
Jwi(a.a )y, dx=nfy,y, dx
[law,) (a_y,)ax= [(a,a_y,) v, de=m[y,y, dx
(n— m)wanwn dx=0
The trivial case occurs when n=m; but when n#m then
Jwo, dx=0

Potential Energy of the Harmonic Oscillator: We can now use the a, operators to

perform some illustrative calculations. Consider the potential energy associated with
the HO.

1 1
V=—kx’ = —mw’x’
2 2
and therefore

(V)= <%ma)2x2> = %mwzjy/:fczl//ndx

First, we express X and p in terms of a, operators ...

)?:(le/z(a++a_) ﬁ:i(hnzle (a,-a.)

2mw

and

h

h
2= (%)(@ va )= (%)(@@ +a,a_+a_a,+a.a_)
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Dirac Notation: Before we evaluate this expression let's introduce some new
notation that will make life simpler for us on future occasions. Instead of writing
the integral between foo we use brackets ( | ) to denote this integral. The first

half is called a "bra” and the second a “"ket”. That is, “bra”-c-"ket" notation is

bra= (| and ket =| )
and for the probability density we would have an expression such as

[~ wowde= (mln)
where the present of ), is understood. Using this notation, integrals for
(x),(p), and<x2> assume the form

[w.iwde=(mliln)  and [y, py,dc=(m|p|n)

_ 1 2.2 _1 2 ) _1 2 ~2
<V>—<Ema) X >—5mw Il//nx l//ndx—zma) (n|x*|n)

(V)= (L]lmwz [<n|a+a+ |n> + <n|a+a_ |n> + <n|a_a+ |n> + <n|a_a_ |n>}

2mm )2
yielding

<V>=’jT“’[n+n+1]:hTw(n+%}

It is important to not get totally embroiled in the equations and neglect the
chemistry and physics. Accordingly, we should ask the question as to the physical
significance of this formula ?



