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Harmonic Oscillator Energies and Wavefunctions 
via Raising and Lowering Operators 

We can rearrange the Schrödinger equation for the HO into an interesting form ... 
2 

+
(
mω x)2 ⎤
⎥
⎥⎦

ψ
=


1


2m 
⎡⎣
p

2 + (mω x)2 ⎤⎦
ψ
= Eψ

1
 ⎡
⎛
! d ⎞


⎢
⎢⎣
⎝
⎜ ⎠⎟2m i dx 

with 

H = 
1 ⎡ p2 + (mω x)2 ⎤
2m ⎣ ⎦ 

which has the same form as 
u2 + v2 = (iu + v)(−iu + v) . 

We now define two operators 

a± 
≡ 

1 

2!mω 
∓ip + mω x( ) 

that operate on the test function f(x) to yield 

(a− a+ x ⎝
⎛ 1 (ip + mω x)(−ip + mω x)⎞⎠ f ( ) ) f ( ) = x
2!mω 

= 
1 ⎡⎣ p

2 + (mω x)2 − imω (xp − px)⎤⎦ f (x)2!mω 

( p2 + (mω x)2 ) − [x, p } f ( ) = {2!1 

mω 2
i 
! 

] x

a−a+ = 
1 ( p2 + (mω x)2 ) + 

2
1 
= 
!
1 

ω 2
1

H +
2!mω 

Which leads to a new form of the Schrödinger equation in terms of a+ and a- … 

Hψ = !ω 
⎝⎜
⎛ a− a+ − 

1 ⎞ 
2 ⎠⎟ 

ψ 

If we reverse the order of the operators-- a−a+ ⇒ a+a− -- we obtain … 
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Hψ = !ω 
⎝⎜
⎛ a+ a− + 

1 ⎞ 
2 ⎠⎟ 

ψ 

or 

⎞!ω 
⎝⎜
⎛ a± a∓ ± 

1 

2 ⎠⎟ 
ψ = Eψ 

and the interesting relation 
a− a+ − a+ a = [a a ] = 1− − + 

A CLAIM: If ψ satisfies the Schrödinger equation with energy E, then a+ψ 
satisfies it with energy (E+!ω ) ! 

H (a+ψ ) = !ω ⎝⎜
⎛ a+ a− + 

2
1 
⎠⎟
⎞ (a+ψ ) = !ω ⎝⎜

⎛ a+ a− a+ + 
2
1 
a+ ⎠⎟
⎞ ψ 

= !ωa+ 

⎛

⎝⎜

a−a+ +


1
2

⎞ 
⎠⎟ 
ψ = a+ 

⎧

⎨

⎩

!ω


⎛

⎝⎜

a+a− + 1 + 

1
2

⎞

⎠⎟ 
ψ
 !ω


⎛

⎝⎜

a+a− + 

1
2

⎞ 
⎠⎟ 
+ !ω⎫ ⎧
 ⎫


⎬
ψ
⎬
= a+ ⎨

⎭
 ⎩
 ⎭


= a+ (H + !ω )ψ = (E + !ω )(a+ψ ) 

H (a+ψ ) = (E + !ω )(a+ψ ) 
Likewise, a-ψ satisfies the Schrödinger equation with energy (E-!ω ) … 

H (a−ψ ) = !ω 
⎛
⎝⎜ a− a+ − 

1
2 

⎞
⎠⎟ (a−ψ ) = !ω ⎛⎝⎜ a− a+ a− − 

1
2 
a− 

⎞
⎠⎟ ψ = a− 

!ω ⎛⎝⎜ a+ a− − 
1
2 

⎞
⎠⎟ ψ 

= a− ⎨
⎧
!ω 

⎝⎜
⎛ a−a+ − 1 − 

2
1 
⎠⎟
⎞ψ ⎬

⎫ = a− (H − !ω )ψ = a− (E − !ω )ψ 
⎩ ⎭ 

H (a−ψ ) = (E − !ω )(a−ψ ) 

So, these are operators connecting states and if we can find one state then we can 
use them to generate other wavefunctions and energies. In the parlance of the 
trade the a± are known as LADDER operators or 

a+ = RAISING and a- = LOWERING operators. 

We know there is a bottom rung on the ladder ψ0 so that 

a−ψ 0 = 0 
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2!mω 

1 ⎛ d ⎞ 
⎝⎜ 
! 
dx 

+ mω x
⎠⎟ 
ψ 0 = 0 

Integrating this equation yields 
dψ 0 mω 
dx 

= − 
! 

xψ 0 

∫ 
dψ 0 = − 

mω
∫ xdx ⇒ lnψ 0 = − 

m
2
ω 
h
x2 + A0ψ 0 ! 

ψ 0 
x e 2! and E0 

= 
2
1 
!ω 

E0 comes from plugging ψ 0 into Hψ = Eψ . We will perform the normalization 
below. 

Now that we are firmly planted on the bottom rung of the ladder, we can 

utilize a+ repeatedly to obtain other wavefunctions, ψn , and energies, En. That is, 

( ) = A0 

−mω x2 

x ( , with E = 
⎝⎜
⎛ n + 

2
1 
⎠⎟
⎞ !ωψ n ( ) = An a+ )

n
e 
−m2

ω
! 
x2 

n 

Thus, for ψ1 we obtain 

1 1 

( ) = A1 

⎛ mω ⎞ 4 ⎛ 2mω ⎞ 2 −mω x2 
ψ 1 

x
⎝⎜ π ! ⎠⎟ ⎝⎜ ! ⎠⎟ 

xe 2! 

where you still have to determine the normalization constant A1. 
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Algebraic Normalization of the Wavefunctions:  We can perform the normalization 
algebraically. We know that 

a+ψ n = cnψ n+1 a−ψ n = dnψ n−1 

What are the proportionality factors cn  and dn ? For any functions f (x)  and g(x) 
∞ ∞

∫−∞ 
f ∗ (a± )gdx = ∫−∞ 

(a∓ f )
∗g dx 

here a∓  is the Hermitian conjugate of a± 

Proof: 

f ∗ (a±g) dx = 
1 

(2!mω )1 2 

⎛ d ⎞ 
dx 

+ mω x
⎠⎟ 
g dx 

∞ ∞ 

−∞ 
f ∗∫−∞ ∫
 ∓!

⎝⎜


recall that 

a± =

1 

(2!mω )1 2 [∓ip + mwx ] =

1 

(2!mω )1 2 

⎡

⎢⎣
∓i ⎞ 

⎠⎟ 
+ mwx ⎤
⎥ = 

⎦
1 

(2!mω )1 2 

d ⎡

⎣⎢

∓!


d 

dx 
+ mwx ⎛ !
 ⎤


⎦⎥
⎝⎜
i dx 

Integrate by parts 

∫ f ∗ (a±g) dx = 
1 

dx = ∫
∞ ⎡
⎢
⎛
⎝⎜ 
±! 

dx
d 

+ mwx ⎞
⎠⎟ 
f ⎤
⎦⎥

∗ 

gdx = ∫−
∞

∞ 
(a∓ f )∗g dx 

−∞(2!mw) ⎣

So we can write 

∫
∞ 
(a±ψ n ) * (a±ψ n )dx = ∫

∞ 
(a∓a±ψ n ) *ψ ndx −∞ −∞ 

We now use 

!ω 
⎝⎜
⎛ a±a∓ ± 

2
1 
⎠⎟
⎞ ψ n = Enψ n and En = 

⎝⎜
⎛ n + 

2
1 
⎠⎟
⎞ !w 

⎛

⎝⎜

a+a− ±

1
2


1
2


⎞ ⎛ 
⎠⎟ 
ψ n 

⎞ 
⎠⎟ 
ψ nn += 

⎝⎜ 

and therefore 
a+a−ψ n = nψ n 

And 

!ω

⎛
a−a+ −

1
2


1
2

⎞ 
⎠⎟ 
ψ n 

⎞ ⎛ 
⎠⎟ 
ψ n = !ω


⎝⎜
 ⎝⎜

n + 
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a−a+ψ n = (n + 1)ψ n 

We can now calculate cn : 

∞

∫−∞ 
(a+ψ n ) * (a+ψ n )dx = cn 

2 
∞ * dx = 

∞ (a−a+ψ n ) *ψ ndx = (n + 1) 
∞
ψ n 
*ψ n dx∫−∞ 

ψ n+1ψ n+1	 ∫−∞ ∫−∞ 

n +1cn = 

The calculation for dn proceeds in a similar manner : 
∞ ∞	 ∞ ∞

∫−∞ 
(a−ψ n ) * (a−ψ n )dx = dn 

2 ∫−∞ 
ψ n
* 
−1ψ n−1dx = ∫−∞ 

(a+a−ψ n )* ψ ndx = n∫−∞ 
ψ n 
*ψ n dx 

dn = n 

Thus we obtain the two normalization constants for the a± 

a+ψ n = (n +1)1 2 ψ n+1 a−ψ n = n1 2 ψ n−1 

HO Wavefunctions: Rearranging the equations to a slightly more useful form yields 

n + 1
1 

==ψ n+1 ( )1 2 a+ψ n	 ψ n−1 

1 

n1 2 
a−ψ n 

We can now use these equations to generate other wavefunctions. Thus, if we start 
with ψ 0  we obtain: 

n = 0 

n = 1 ψ 2
1 1 

2 2 

n = 2 ψ 3	 2
1 

+ 1 3
1 

⋅ 2 

n = 3 ψ 4 =	
1 1 

3 + 1 4 ⋅ 3 ⋅ 2 
So that ψ n is 

ψ 1 = 
1 

0 + 1( )1 2 a+ψ 0 = a+ψ 0 

= a+ψ 1 = a+( )2 ψ 0 

= a+ψ 2 = a+ 
3ψ 0 

a+ψ 3 = a+ 
4ψ 0 

ψ n = 
1 
n! 
a+( )n ψ 0 
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Orthogonality of the HO Wavefunctions:  Recall the orthogonality condition for 
two wave functions is 

∫
∞
ψ n 
*ψ mdx = δnm−∞ 

Using the a± operators we can show this condition also holds for the HO 
wavefunctions. The proof is as follows. 

∫ψ m 
* (a+a− )ψ n dx = n∫ψ m 

* ψ n dx 

∫ (a−ψ m )∗ (a−ψ m )dx = ∫ (a+a−ψ m )∗ψ n dx = m∫ψ m 
* ψ n dx 

(n − m) ∫ψ m 
* ψ n dx = 0 

The trivial case occurs when n = m ; but when n ≠ m  then 

∫ψ m 
* ψ n dx = 0 

Potential Energy of the Harmonic Oscillator:  We can now use the a± operators to 
perform some illustrative calculations. Consider the potential energy associated with 
the HO. 

1 1
V = 

2 
kx2 = 

2 
mω 2 x2 

and therefore 
1 

2 
mω 2 x2V = = 

1
2 
mω 2 ∫ψ n 

* x̂2ψ ndx 

First, we express x̂  and p̂  in terms of a± operators … 

1 2 1 2 

x̂ = 
⎝⎜
⎛ 
2m
! 
ω ⎠⎟
⎞ (a+ + a− ) p̂ = i

⎝⎜
⎛ !m
2 

ω 
⎠⎟
⎞ (a+ − a− ) 

and 

x2 ⎛ ! ⎞ )2 ⎛ ! ⎞ = 
⎝⎜ 2mω ⎠⎟ 

(a+ + a− = 
⎝⎜ 2mω ⎠⎟ 

(a+a+ + a+a− + a−a+ + a−a− ) 
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Dirac Notation:  Before we evaluate this expression let’s introduce some new 
notation that will make life simpler for us on future occasions. Instead of writing 
the integral between ±∞  we use brackets to denote this integral. The first 
half is called a “bra” and the second a “ket”. That is, “bra”-c-“ket” notation is 

bra = and ket =


and for the probability density we would have an expression such as


∞

∫−∞ 
ψ m 

* ψ ndx = m n 

where the present of ψ m 
*  is understood. Using this notation, integrals for 

x2x , p , and assume the form 

∞

∫−∞ 
ψ m 

* x̂ψ ndx = m x̂ n  and 
∞ * p̂ψ ndx =∫−∞ 
ψ m m p̂ n

1 

2 
mω 2 x2V = = 

2
1 
mω 2 ∫ψ n 

* x̂2ψ ndx = 
2
1 
mω 2 n x̂2 n 

⎛ ! ⎞ 1
2 
mω 2 ⎡⎣V = n a+a+ n + n a+a− n + n a−a+ n + n a−a− n ⎤⎦⎝⎜ 2mω ⎠⎟ 

yielding 

V = 
hω 
4 

n + n +1⎡⎣ ⎤⎦ = 
!ω 
2 

n + 
1 
2 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 

It is important to not get totally embroiled in the equations and neglect the 
chemistry and physics. Accordingly, we should ask the question as to the physical 
significance of this formula ? 


