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THE POSTULATES OF QUANTUM MECHANICS

(time-independent)

Postulate 1: The state of a system is completely described by a
wavefunction l//(l‘,l‘).

Postulate 2: All measurable quantities (observables) are described by
Hermitian linear operators.

Postulate 3: The only values that are obtained in a measurement of an
observable "A" are the eigenvalues “an" of the corresponding operator " 4". The

measurement changes the state of the system to the eigenfunction of A with
eigenvalue an.

Postulate 4: If a system is described by a normalized wavefunction v,

then the average value of an observable corresponding to Ais
<a> = jl// *zzlllldT

Implications and elaborations on Postulates

#1] (a) The physically relevant quantity is ‘1//‘2

2

v *(r,t)l//(r,t) = ‘l//(l’,t)‘ probability density at time t

and position r

(b) l//(r,t) must be normalized

Jl//*l//dl‘Zl

(c) l//(r,t) must be well behaved
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(i)  Single valued
(ii)  w and ¥y’ continuous
(iii)  Finite

#2] (a) Example: Particle in a box eigenfunctions of H

A

H(x)y,(x)=Ey,(x) v, (%)= (E]m sm(”_”xj

But if ¥ is not an eigenfunction of the operator, then the statement is not
true.

eg. VY, (x) above with momentum operator

1/2
A B ]

o) [2] =)

(b) Inorder to create a Q.M. operator from a classical observable, use

A

. . d : : :
x=x and p_=-ih— and replace in classical expression.

dx
e.g.
1 1 nod’
KE=—p"=—I(p)(p)J=——— (1D
om? 2m(p)(p) 2m dx* (1D)
2 2 2 2
=—h L + L + J (3D)
2m\ ox* 9y 0z’

Another 3D example: Angular momentum L =rXp
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d

| =yp —zp =—ih| y——z—
« VP, TP [ydz Zdyj
d d

| =zp —xp =—ih| z——x—
zp Xp ZLde de]

d d

[ =xp —yp =—ihi| x—— y—
;=P P ! (xdy ydx]

(c) Linear means

(d) Hermitian means that

Jl//l*ﬁh//zdr = Jl//2 (211//1 ) dt

and implies that the eigenvalues of A are real. This is important!!
Observables should be represented as real numbers.

Proof: Take 1?11// = ay
o (= fo i) o

Jl//*al//dr = Jw(aw)* dt

= a=a*
true only if a is real
(e) Eigenfunctions of Hermitian operators are orthogonal

ie. if flwm =a Yy and 211//}1 =ay,
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then Jw;y/"dz':o if m#n

Proof:
Jw;ﬁwndr = J.l//n (211//’" )*dr
a,Jv,w,dt=a, vy, dr
= (an — a;)jl//;!//nd‘[ =0
(4.~

a;)Jw;wndr =0

-
= 0if =0ifnzm
n=m
Example:  Particle in a box
v,
vy, As much + as - area
v,
Eigenfunctions vy, -
of
v,
v vV,
0 xX—» a 0 x—» a

In addition, if eigenfunctions of A are normalized, then they are orthonormal
[w,y,dc=5,

Kronecker delta
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_J1 if m=n (normalization)
"™ 10 if m#n (orthogonality)

#3] If y isan eigenfunction of the operator, then it's easy, e.g.

A

Hy =Evy, measurement of energy yields value
But what if y is not an eigenfunction of the operator?
e.g. ¥ could be a superposition of eigenfunctions

v=co +c0,

where 121¢1 =a¢, and "a{Pz =a,0,

Then a measurement of A returns either a, or a,, with probability ¢’ or c;

respectively, and making the measurement changes the state to either ¢ or ¢,.

> ¢ (probability c)

P > ¢, (probability ¢)
measure 2

#4] This connects to the expectation value

(i) If y, isaneigenfunction of A, then 121% =ay,
<a> = jt//:fh//ndr = anjw:y/ndr =a

<a> =a only value possible
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(i) If y=co +c,¢, asabove

<a> = J.l//*;llydl' = I(clgbl +c,0, )*ﬁ(clq + c2¢2)dr =cla +cla,

ci® is the probability of measuring a,

<a > = average of possible values weighted by their probabilities



