MIT OpenCourseWare http://ocw.mit.edu

5.60 Thermodynamics & Kinetics Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Calorimetry

The objective is to measure

$$\Delta \mathcal{H}_{rx}(T_1)$$
 Reactants $(T_1) = \frac{\text{Softermal}}{\text{constant } p}$ Products (T_1)

<u>Constant pressure</u> (for solutions)

I)
$$\Delta H_{I}$$
 React. $(T_1) + Cal. (T_1) \stackrel{\text{adiabatic}}{=} \text{Prod.} (T_2) + Cal. (T_2)$

II)
$$\Delta \mathcal{H}_{II}$$
 Prod. $(T_2) + Cal. (T_2) = Prod. (T_1) + Cal. (T_1)$

$$\Delta \mathcal{H}_{rx}\left(T_{1}\right)$$
 React. (T_{1}) + C al. (T_{1}) $\underset{constant p}{=}$ Prod. (T_{1}) + C al. (T_{1}) $\Delta \mathcal{H}_{rx}\left(T_{1}\right) = \Delta \mathcal{H}_{I} + \Delta \mathcal{H}_{II}$

(I) Purpose is to measure (T_2 - T_1)

Adiabatic, const. $p \Rightarrow q_p = 0 \Rightarrow \Delta H_I = 0$

(II) Purpose is to measure heat $q_{\rm p}$ needed to take prod. + cal. from $T_{\rm 2}$ back to $T_{\rm 1}$.

$$q_p = \int_{T_1}^{T_2} C_p (Prod. + Cal.) dT = \Delta H_{II}$$

$$\therefore \quad \Delta \mathcal{H}_{rx}\left(T_{1}\right) = -\int_{T_{1}}^{T_{2}} \mathcal{C}_{p}\left(\textit{Prod}. + \textit{Cal}.\right) dT \approx -\int_{T_{1}}^{T_{2}} \mathcal{C}_{p}^{\textit{cal}} dT = -\mathcal{C}_{p}^{\textit{cal}} \Delta T$$

<u>Constant volume</u> (when gases involved)

I)
$$\Delta U_{I}$$
 React. $(T_{1}) + Cal. (T_{1}) \stackrel{adiabatic}{=} Prod. (T_{2}) + Cal. (T_{2})$

II)
$$\Delta U_{II}$$
 Prod. $(T_2) + Cal. (T_2) = Prod. (T_1) + Cal. (T_1)$

$$\Delta U_{rx}(T_1)$$
 React. (T_1) + Cal. (T_1) $\underset{constant \ V}{=}$ Prod. (T_1) + Cal. (T_1)

$$\Delta U_{rx} \left(T_{1} \right) = \Delta U_{I} + \Delta U_{II}$$

(I) Purpose is to measure (T_2 - T_1)

Adiabatic, const.
$$V \Rightarrow q_V = 0 \Rightarrow \Delta U_I = 0$$

(II) Purpose is to measure heat q_V needed to take prod. + cal. from T_2 back to T_1 .

$$q_{V} = \int_{T_{1}}^{T_{2}} C_{V} (Prod. + Cal.) dT = \Delta U_{II}$$

$$\therefore \quad \Delta U_{rx}(T_1) = -\int_{T_1}^{T_2} C_V(Prod. + Cal.) dT \approx -\int_{T_1}^{T_2} C_V^{cal} dT = -C_V^{cal} \Delta T$$

Now use H = U + pV or $\Delta H = \Delta U + \Delta (pV)$

Assume only significant contribution to $\Delta(pV)$ is from gases.

Ideal gas
$$\Rightarrow \Delta(pV) = R\Delta(nT)$$

Isothermal $T = T_1 \Rightarrow \Delta(pV) = RT_1\Delta n_{gas}$

$$\therefore \Delta \mathcal{H}_{rx}(T_1) = \Delta U_{rx}(T_1) + R T_1 \Delta n_{gas}$$

$$\Delta \mathcal{H}_{rx}(T_1) = -\int_{T_1}^{T_2} C_V(Prod. + Cal.) dT + R T_1 \Delta n_{gas} \approx -C_V^{cal} \Delta T + R T_1 \Delta n_{gas}$$

Difference between ΔU and ΔH small but measurable

e.g.
$$4 \text{ HCl}(g) + O_2(g) = 2 \text{ H}_2O(l) + 2 \text{ Cl}_2(g)$$

$$T_1 = 298.15 \text{ K}$$

$$\Delta U_{rx}(T_1) = -195.0 \text{ kJ} \qquad \Delta n_{gas} = -3 \text{ moles}$$

$$\Delta H_{rx}(T_1) = -195.0 \text{ kJ} + (-3 \text{ mol})(298.15 \text{ K})(8.314 \times 10^{-3} \text{ kJ/K-mol})$$

$$= -202.43 \text{ kJ}$$

Now let's imagine really running this reaction in a constant-V calorimeter with $C_v = 10 \text{ kJ/K}$

Calorimeter thermal mass >> product thermal mass Heat goes to changing calorimeter \mathcal{T} Often no need to know product \mathcal{C}_p or \mathcal{C}_V value

Bond energies: An approximate method for estimating ΔH_f° Really bond enthalpies, but usually $\Delta(pV)$ << difference

- 1) Measure bond energies for known compounds
- 2) Use them to estimate ΔH_f° for unknown compounds

e.g.
$$CH_4(g) = C(graphite) + 2 H_2(g)$$
 $\Delta H_I = -\Delta H_{f,CH_4}^{\circ}$ $C(graphite) = C(g)$ $\Delta \overline{H}_{C}(atomization)$ $2 H_2(g) = 4 H(g)$ $2\Delta \overline{H}_{H_2}(atomization)$

$$CH_4(g) = C(g) + 4 H(g)$$
 H
 $H - \dot{C} - H$
 $\Delta H = 4B_{C-H}$
 $A = 416.2 \text{ kJ}$

$$4 B_{C-H} = -\Delta H_{f,CH_4}^{\circ} + \Delta \overline{H}_{C(atom.)} + 2\Delta \overline{H}_{H_2(atom.)} \Rightarrow B_{C-H} = 416.2 \text{ kJ}$$

$$H H$$

$$C_2H_6(g) = C(g) + 6 H(g) \qquad H-C-C-H$$

$$H H$$

$$\Delta H = B_{C-C} + 6B_{C-H}$$

$$= -\Delta H_{f,C_2H_6}^{\circ} + 2\Delta \overline{H}_{C(atom.)} + 3\Delta \overline{H}_{H_2(atom.)} \Rightarrow B_{C-C} = 342 \text{ kJ}$$

Now estimate ΔH_f° for n-pentane, C_5H_{12} CH_3 - CH_2 - CH_2 - CH_2 - CH_3

5
$$C(graphite) = 5 C(g)$$
 5 $\Delta \overline{H}_{C(atom.)}$
6 $H_2(g) = 12 H(g)$ 6 $\Delta \overline{H}_{H_2(atom.)}$
5 $C(g) + 12 H(g) = C_5 H_{12}(g)$ $\Delta H \approx -(4B_{c-c} + 12B_{C-H})$

5 C(graphite) + 6 H₂(g) =
$$C_5H_{12}(g)$$
 $\Delta H_{f,C_6H_{12}}^{\circ}$

5.60 Spring 2008 Lecture #7 page 5

$$\Delta \mathcal{H}^{o}_{f,\mathcal{C}_{5}\mathcal{H}_{12}} \approx -\left(4\mathcal{B}_{c-c} + 12\mathcal{B}_{\mathcal{C}-\mathcal{H}}\right) + 5\Delta\overline{\mathcal{H}_{\mathcal{C}(atom.)}} + 6\Delta\overline{\mathcal{H}_{\mathcal{H}_{2(atom.)}}}$$
 ~ -152.6 kJ (estimated)

Actual $\Delta H_{f,C_5H_{12}}^{\circ}$ (n-pentane) = -146.4 kJ

 $$\it CH_3$$ But $\it CH_3$ - $\it CH_3$ is also $\it C_5H_{12}$ with 4 C-C bonds, 12 C-H bonds $\it CH_3$

 \Rightarrow $\Delta H_{f,C_5H_{12}}^{\circ} \sim -152.6 \text{ kJ}$ (estimated using bond energies)

Actual $\Delta H_{f,C_5H_{12}}^{\circ}$ (neopentane) = -166.1 kJ