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STATISTICAL MECHANICS
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Goal of Statistical Mechanics: to describe macroscopic, thermodynamic
properties in ferms of microscopic atomic & molecular properties

Properties of a system can be described at two levels:

1) Macroscopic thermodynamic descriptione.g. p, V., n, &y, H, A, 6,.....

2) Microscopic description
Specify the state of each moleculel

Use classical or quantum mechanics
More than 102® variables! And need to update them every 10 s or sol

Either classical or quantum description is impractical. Statistical mechanics
describes macroscopic mechanics in statistical terms, i.e. in ferms of “average’
or "most probable” results.

Probability of system in a state with given enerqgy

What is functional form?
For independent energies ¢ and ¢ the joint probability should be the product:
Pij(si + SJ) = Pi(Si)Pj(EJ')

g,-+£j) _ Cs ng

Suggests exponential form £ (s, + gj)e€< = e“e“™ (C = constant)

1
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We expect high-energy states to be less probable than low-energy states, and
that they become more probable at high T, i.e. ratio of & tfo T is what matters.

Suggests form P(&)~ eCall (C = constant > 0)

Or more conventionally | P,(g)o e “/XT| Boltzmann probability distribution

where k = R/N4 = 1.38 x 107'® erg/K is the Boltzmann constant
For two states i and j with energies ¢; and ¢j, the relative probability is

B e
j e—€J/kT

To get absolute probabilities (not just relative), write
P (g)oc e—[;‘i/kT _ ae—b‘i/kT

Sum of probabilities for all the states must equal 1:
_ 1
P=1=a) e/ S| paa—
Z i Z Ze—si/kT
i

—Si/kT
I:Ji :ef.k
Ze & /KT

i

probability of being in state i

For a whole system or assembly of molecules, in a particular system state i
(specified by indicating the state of each and every molecule) with energy E;:

o o Ei/kT
i

Partition functions

The sums Ze‘g‘/ =g Molecular partition function
]

> e =Q Canonical partition function
i
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measure how probabilities are partitioned among different available states.
They are unitless numbers.

Example: perfect atomic crystal lattice at T # 0 K
Set ground state energy Eo = O
All other state energies >> kT = Q # 1

. o Eo/kT o Eo/kT
= ~ :1
0 (e—EO/kT L BT +) g Eo/KT

Example: mole of atoms in the gas phase at room T

Could be treated quantum mechanically (particle in a box states) or classically
(continuum of states of different kinetic energy).

Or use "lattice” model: divide available volume into atomic size volume elements
~1A%=10% n?

If total volume ~ 1 m?, then each atom has 10°° possible locations

Molecular “translational” partition function is

—& ,trans/kT _ 1030
Z e - qtrans ~10
1

For a system of N = 10** atoms, how many microscopic states?
How many ways to assign atoms to selected locations:

(10°)(10%)(10%)..-(10%) = (107} =101*"*") — g

— Ytrans

Huge number! Number of distinguishable states is less if the particles are
indistinguishable: Have to divide by NI = 10%

Qurane = Ot distinguishable particles
Quae = 0iee /N1 indistinguishable particles

Stirling's approximation: InNl # NInN- N or NI & e™NN
So

_ qf%ﬂs _ qf//\ims _ (1030 )1024 _ 106 1024 1024 106 1024 100.4 10 _ 106.4/\'1024
erans - NI - NNefN (1024 )1024 671024 —( ) € _( ) ( ) =
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Smaller, but still huge! So probability for any one system state is incredibly
small. The probability is partitioned among a huge number of states.

Example: polymer configurations including protein folding.

e.g. just 4 polymer subunits with some favorable interaction energy -¢ix+ (e.g. due
to H bonding) if non-covalently bonded subunits are in neighboring "lattice”

sites:
Molecular state i: 8—%

Energy ei: -Eint \O 0 0 y
Y
Degeneracy g;: 1 3

In this simple example, the "configurational” molecular partition function is

Qo = €/ _gfin/NT  QOKT 4 @OKT 1 @OKT _ gin/KT | 360KT _ gfin/KT 4 3

microstates
i

The last expression suggests writing the partition function as a sum over energy
levels ¢; instead of individual states, if we account for their degeneracies g;:

eont = Z gie_gi/kT —efin/KT | 300KT _ géin/KT | 3

energies
&

This can be done for the canonical partition function too, if we account for the
degeneracies Q; of system energies E;:

o Z o EikT _ Z Qie—Ei/kT

states energies
i

All the thermodynamic functions can be calculated from Q!





