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Fundamental Equations, Absolute Entropy,
and The Third Law

o Fundamental Equations relate functions of state to each other using
1" and 2" Laws

1" law with expansion work: dU = dq - pextdV

need to express dq in
terms of state variables
because dq is path dependent

Use 2" law: dq™' = TdS

For a reversible process pext=p and dq=dq™ =TdS

So..... *x[dU = Tds - pdv |

This fundamental equation only contains state variables

Even though this equation was demonstrated for a reversible
process, the equation is always correct and valid for a closed (no
mass transfer) system, even in the presence of an irreversible
process. This is because U, T, S, p, and V are all functions of
state and independent of path.

AND The "best” or "natural” variables for U are S and V,

xx U(S,V) % %
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xx U(S,V) % %

oy oy
dU=Tds - pdv = *| (V) -1 . (Y] __ |~
From pdV = (asjv (ans P

We can write similar equations for enthalpy

Hz=U+pV = dH=dU+d(pV)=dU+pdV+ Vdp

\

inserting dU = TdS - pdV

— **[dH = TdS + Vdp J*

The natural variables for H are then S and p

*x%x H(S,p) I**

From dH = TdS + Vdp = ** (ﬁ) T (ﬁj Y
p S

We can use these equations to find how S depends on T.

0S 1(0U C
= TdS - —=| == =] ==
FromdU = TdS -pdV = (aij T(GT)V T

0S 1(0H C
F H=T il I B L R
rom d ds + Vdp = (a jp : (8T)p T
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. Absolute Entropies

Absolute entropy of an ideal gas

From dU = TdS - pdV = ds =Y *PdV

£
At constant T, dU=0 = dS. =pd?v

For an ideal gas, pV =nRT = dS; = nRdV

v
At constant T d(pV) =d(nRT)=0 = pdV =-Vdp

nRdp
P

SO dST = -

For an arbitrary pressure p,

nRdp

S(p,T) = S(p°, T) - [f P = S(p°, T) - ann(p%J

where p° is some reference pressure which we set at 1 bar.

= S(p,T)=S(T)-nRInp (pinbar)

S(p,T)=S°(T)-RInp (p in bar)

But to finish, we still need S°(T) |

Suppose we had S°(0K) (standard molar entropy at O Kelvin)

C _
Then using (2—?) :?p we should be able to get S°(T)
p
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Consider the following sequence of processes for the substance A:

A(s,0K,1bar) = A(s,T.1bar) = A, T, 1bar) = AR, Ty, 1bar)
= A(9,Ts,1bar) = A(g,T,1bar)

(s)dT AH,
T

m

1 C(0dT  AHg, 7 G(g)dT

S(T.1bar) =5°(0K) + [ " R T:°P+ k=5

s(T) ¢ o8 dT

f\\

Solid melts, AS =

AHYP

Liquid boils, AS =

AHfus

[
>

T

Since AS° is positive for each of these processes, the entropy
must have its smallest possible value at O K. If we take S°(0K) =

zero for every pure substance in its crystalline solid state, then
we could calculate the entropy at any other temperature.

This leads us to the [Third LawI!!!

THIRD LAW:

First expressed as Nernst's Heat Theorem:

. Nernst (1905): As T—>0K, AS -0 for all isothermal
processes in condensed phases
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More general and useful formulation by M. Planck:

e Planck (1911): AsT—>0K, S—> 0 for every chemically
homogeneous substance in a perfect crystalline state

Justification:
® It works!
@  Statistical mechanics (5.62) allows us to calculate the
entropy and indeed predicts S°(0K) = 0.

This leads to the following interesting corollary:

It is impossible o decrease the temperature of any system to
T = 0K ina finite number of steps

How can we rationalize this statement?
Recall the fundamental equation, dU = T dS - p dV

dU=¢C,dT For 1 mole of ideal gas, P = RT/V

so C,dT=TdS-(RT/V)dV
dsS=C,d(InT)+Rd (InV)
For a spontaneous adiabatic process which takes the system
from T; to a lower temperature T,
AS=C,In(T2/T)+RIn(V2/Vy) >0
but if T, = 0, C, In (T2/T1) equals minus infinity |

Therefore R In (V2/Vi) must be greater than plus infinity, which
is impossible. Therefore no actual process can get you to T, = 0 K.

But you can get very very closel
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In Prof. W. Ketterle's experiments on "Bose Einstein
Condensates" (MIT Nobel Prize), atoms are cooled to nanoKelvin
temperatures (T = 10 K) ... but not to 0 K |

Another consequence of the Third Law is that

IIT is impossible to have T=OK.I

How can we rationalize the alternate statement?

Consider the calculation of S starting at T=0K

C (s)dT
S(s, T lbar) = j;&

to prevent a singularity at T=0,,—>0as T - 0 K

in fact, experimentally C, =T +AT> +...

That is, the heat capacity of a pure substance goes to zero as T goes
to zero Kelvin and this is experimentally observed.

Combining the above with dT = dq,/C, , at T=0 any infinitesimally
small amount of heat would result in a finite temperature rise.

In other words, because C,— 0 as T — O K, the heat dq, needed to
achieve a temperature rise dT, (dq,=C,dT) also goes to zero at O K. If

you somehow manage to make it to O K, you will not be able to maintain

that temperature because any stray heat from a warmer object

nearby will raise the temperature above zero, unless you have perfect

thermal insulation, which is impossible.
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e Some apparent violations of the third law (but which are not !)
Any disorder at T = 0 K gives rise o S>0
e For example in mixed crystals

AS. .. = nR[X,InX, +X;InX;] >0 Always lll Even at T=0K
But a mixed crystal is not a pure substance, so the third law
is not violated.

e Any impurity or defect in a crystal also causes S > O at
0K

e Any orientational or conformational degeneracies such is
in a molecular crystal causes S > 0 at O K, for example in
a carbon monoxide crystal, two orientations are possible:

CO CO CO €O CcO CcO co

CO CO CO CO CO 0CCO

CO CO COO0OCCO CcO co

CO CO CO €O CcO cO co





