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STATISTICAL THERMODYNAMICS

Calculation of macroscopic thermodynamic results

Entropically driven examples:

Free expansion of a gas Vi vacuum| —>» Ve
gas gas

Lattice model for ideal gas translation: .
Molecular volume v, Total volume V .

All molecular positions have equal energy etrans = 0

All system microstates have equal energy Eirans = O ‘

Vi

Calculate S = 4InQ in each state

Molecular degeneracy g = V/v V2

System degeneracy Q = g"/NI = (V/v)N/NI

For expansion from volume Vi to V2, .
N
I
AS =KkInQ, —kInQ, =kin % kln(VZ/V—)N/N' O
A ()N
V V
AS = 2 _ 22
S =Nkln y nRInv1

Should look familiar! And AG = AH-TAS = —nRTIn%
1

Entropy change is positive, free energy change is negative, as we expect.
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Na Ne »| N=Na+Ng

Ideal gas mixtur
ea gCl | e VA VB V - VA . VB

Assume same initial (p,T) for A & B = same (p,T) for mixture

Assume equal molecular volumes & lattice cell sizes. .
Then initially .

V, V™V /v)
S, = KInQ, +Kin@, = kin0,0, = kin' % |) (Ve/ |)

&
®

After mixing: Count how many ways fo distribute N
molecules of A and Ng molecules of B among the (V/v)
lattice sites

As before, the number of ways to distribute N
molecules among (V/v) sites is (V/v)".

To correct for indistinguishability, divide by Na!Ng!

So the final state entropy is

e o (V)
Sz_kan_kInNA!NB!

AS=S5,-S, =kin

N Ny Ng (Na+Ng) Nay/Ng
Vv)” kin )" (ov) ™ _ kin (V/'\:) i = Kin VN VNB
N, IN, ! NS N (Va V)™ (Ve /v) VAV,

Since the initial pressures are the same, the initial volumes must be in the ratio
of the number of molecules, i.e. Va/V = Na/N = X4 and Vg/V = Xg, so

Nay/Ne
AS = kln% — KInX% —kInX® = ~NK(X,InX, + X InX; ) (> 0)
A B

With a simple microscopic model we can derive the macroscopic entropy changel!
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Ideal liquid mixture

Lattice model is different from gas because all the cells are occupied. Then in
the pure liquid there is no disorder at all!

S, =klnQ, =kln1=0

S, =klnQ, =kln1=0

Mixture: N molecules for N sites.

First molecule has N choices, second (N - 1), etc.
# ways to put the molecules into sites = NI
Correct for overcounting by dividing by Na!Ng!

N!
ASmix - Smix - (SA + SB) - Smix - klng)mix - kan

Stirling's approximation InNl' # NInN-N =

AS,, = NKInN = MK - (N,KInN, — MK +NkInN, — Nk )

— (N, + Ng )KInN - NKInN, — N;kInN, = NAklnNﬂ+ NBkmNﬂ

A B

= -NKk(X,InX, + X, InX;)

Real liquid has additional states - positional disorder, molecular rotation, etc. -
but these occur in both the pure and mixed liquids, so ASpix is dominated by the

disorder in molecular positions that the lattice model describes reasonably well.
KA KK A KA A KA A A A KA A LKA AL KA AKX ALK AKX KEAXAAXAAKAARKAARA Ak Xk khkhkkhkkkhkkkhkkkkkkx

Q=10 = 51/213!

Combinatorics:
Simple example
Mix 2 molecules A
+3 molelcules B

]
How many distinct

configurations Q?
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Energy & entropy changes
We saw one example earlier, with 4-segment polymers.

Molecular state: 8—%

Energy & 0 Eint Eint gint
Y
Degeneracy g: 1 3

We've redefined the zero of energy as the ground state energy.
"Configurational” molecular partition function is

Qeors = Z e_gi,conf/kT = eo/kT + e_ein’r/kT + e_gin'r/kT + e_gim‘/kT
con

states
i

— Z g .e_si/kT — eo/kT 4 3e_gin'r/kT =1+ 3e_gim/kT

energy levels

For a solution of noninteracting polymer molecules,

N
Qconf = qf:\z])nf = (1 + 3e_gim/kT)
We can determine the thermodynamic properties:

A = KTINQ,,¢ = -NKTIn(1+3e ") = -NKTIn(1+ 3¢ P |

U oln Qconf N oln (1 + 3¢ Peint ) N 38ime—l38inf
conf — P == P = —1 3 Per
B Jun § . +3e

Energy scales with N: molecules are not interacting with each other so total
energy is just a sum of individual molecule energies.
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Average energy per molecule is

—Be
_ Uconf _ 38in’re "

2ee™ 0.3 ot
But we also know (g) = > &P =- = - - same result
i (] 1+ E;Ei int
A, U 1(0InQ, pey N 3g, e P
S = ——2f 4 —conf —KIn | et | — NkIn(1+3e P )4 = Zm=
conf T T QCOHf T( 88 JV’N ( ) T 1 + 367B8in‘t

Also scales with N - sum over individual molecule entropy contributions
Average molecular configurational entropy is

1 3g,,e

S. .= k|n(1+3e_ﬁ8‘“*)+ T1130 Fm

conf

In high-T (low-B) limit, it's AIn(4) as expected. In low-T limit, it's kin(1) = O.

(2] - kT — KTIn(1+ 3 P
Mconf (GN j-‘-lv ( aN j_‘_,v n( + o€e )

Chemical potential is just A per molecule, and A scales with N so it's just A/N.

C — M __ 1 6Umf _ N i 38ime*l38int
Veonf 8T VN sz aB VN kT2 @[3 1+3e_B£in1‘

. 38ian (1 + 36_Bﬁim )(_gl_me—ﬁsmt ) _ e_BginT (—38"”6_[38‘"* )
T KT? (1 -+ 3¢ Poim )2

Scales with N, so we can think of a configurational heat capacity per molecule.

Complicated function, but its limits are understandable:
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Co.. -0 as T—>0

At low T, all molecules are in the lowest state. If
kT increases infinitesimally, all the molecules are
still in the lowest statel So the configurational
energy Ucons doesn't change!

¢, —50as THw
conf

At high T, the molecules are equally distributed
among all the states. If kT increases, they are
still equally distributed among all the states! So
Ucont doesn't change.
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The low-T limit Cy — 0 is common to almost every degree of freedom since
ultimately a temperature is reached at which only the lowest level is occupied.

The high-T limit Cy — O is characteristic of systems or degrees of freedom
with a finite number of states, i.e. a maximum possible energy. In that case,
ultimately a temperature is reached at which the equilibrium distribution is ~
equal probability of all the levels being occupied. This is the case for molecular
configurations as discussed here and for spin states of nuclei and electrons.





