Massachusetts Institute of Technology

5.44: Organometallic Chemistry

Problem Set 1

Due: Tuesday, November 9, 2004

- (1) For the following compounds, please provide for each metal:
 - (a) the total electron count
 - (b) the formal oxidation state of the metal
 - (c) the dⁿ electron count (i.e., give n)
 - (d) the ML_aX_b assignment (i.e., give a and b)
 - (1.1) $(t-Bu)_3P-Pd-P(t-Bu)_3$

$$(1.3) \quad \left\langle \left(-Pd \stackrel{Cl}{\underset{Cl}{\longrightarrow}} Pd - \right) \right\rangle$$

(2) Provide an explanation for the following data:

IR stretching frequency of CO (cm⁻¹)

(η ⁵ -C ₅ H ₅) ₂ Ti(CO) ₂	1899
$(\eta^5 - C_5 Me_5)_2 Ti(CO)_2$	1858

- (3) Ferrocene reacts with the acylium ion, Me–C= $\stackrel{\frown}{C}$, to give complex X, which is a cation. A base then abstracts a proton from X to give Y, which has the formula $C_{12}H_{12}FeO$. Y reacts further with the acylium ion, followed by base, to give Z. Provide structures for X, Y, and Z.
- (4) N_2 has molecular orbitals slightly different than those of CO. Draw a π^* orbital of N_2 and a π^* orbital of CO, and compare the two orbitals. Would you expect N_2 to be a stronger or a weaker π -acceptor than CO? Briefly explain your reasoning.
- (5) Suggest the structure of Os₃(CO)₁₂, based on the information that it obeys the 18-electron rule for each osmium.