Massachusetts Institute of Technology **Organic Chemistry 5.13**

September 17, 2003 Prof. Timothy F. Jamison

Notes for Lecture #6

¹H NMR Spectroscopy – Spin-Spin Coupling and Connectivity

Signature "Splitting" Patterns in ¹H NMR Spectra

typically O, N, C of Ar, etc.

Two Triplets (each 2H) Adjacent methylene groups Z1-CH2CH2-Z2 Z^1 , Z^2 = very different non H-bearing atoms

atoms

Two Triplets (each 2H) and Quintet (2H) Three adjacent methylene groups Z1-CH2CH2CH2-Z2 Z^1 , Z^2 = very different non H-bearing atoms

¹H NMR Coupling Constants (Expanded)

In rigid systems, vicinal coupling can range from 0 to 15 Hz. For example:

Spin-spin coupling in alkenes:

Spin-spin coupling in arenes:

$$H_a$$
 H_b
 J_{ab} (ortho) 6-10 Hz
 J_{ac} (meta) 1-3 Hz
 J_{ad} (para) 0-1 Hz

Note: Structures shown above represent generic coupling situations and not the specific molecules depicted (in which the labeled protons would be chemically equivalent and would not couple).

Spin-Spin Coupling for "Vicinal" Protons

The spin of proton H_a influences the energy of the two spin states of proton H_b . This "coupling" is transmitted by the electrons in the bonds linking H_a and H_b . The lowest energy state for proton H_b occurs when the spins of the two protons are antiparallel. Note that this effect does not require that the molecule be in an external magnetic field.

Key Features of Spin-Spin Splitting

- 1. No coupling occurs among chemically (and magnetically) equivalent atoms.
- 2. A nucleus coupled to n equivalent nuclei with spin l is split into 2nl + 1 lines.
- 3. Nuclei coupled to each other have the same coupling constant ("J").
- The magnitude of the coupling constant J depends on the dihedral angle and the number and type of intervening bonds, but is not affected by the strength of the applied field.
- 5. "First-order spectra" are obtained only if $(v_a v_b)/J_{ab} > ca. 7$ Hz.
- 6. The splitting pattern for nuclei coupled to two or more **nonequivalent** atoms can be predicted using "tree diagrams".