Massachusetts Institute of Technology ## 5.13: Organic Chemistry II Dr. Sarah A. Tabacco ## Hour Exam #4 December 5, 2003 | Printed Name <u>E</u> | Signature | |---|---| | MIT ID # | Recitation TA | | General Instructions: | | | are allowed to use molecular me Make sure that your exam has 1 extra work, and a periodic table Write your name on each page. | 12 pages (including cover, a blank page for e). ovided. If you run out of room, use the blank grader. ish to receive partial credit. | | • GOOD LUCK!! | 1/5 | | | 2/9 | | | 3/12 | | | 4/10 | | | 5/10 | | | 6/10 | | | 7/10 | | | 8/10 | | | 9/12 | | | 10/12 | | | Total | | | (out of 100 points) | 1. (5 points, all or nothing) Please rank the following species by carbocation stability. (1 = most stable, 2 = least stable) **2.** (3 points each, 9 points total) In the boxes, please provide the reagents for the illustrated transformations. More than one step may be required. **3.** (2 points each, 12 points total) Please provide the products of the following reactions. If no reaction is expected, write "NR". **4.** (2 points each, 10 points total) Please provide the reagents for the following transformations. Be specific about quantities of reagents where relevant. **5.** (10 points) Please provide a detailed mechanism for the following transformation. Show all arrow pushing. **6.** (10 points) Please provide a detailed mechanism for the following transformation. Show all arrow pushing. Me Me $$H = OH_2$$ Me Me $H = OH_2$ H_3O^+, Δ Me Me Me H H_2O Me Me H H_2O H_3O^+, Δ H_2O H_3O^+, Δ H_2O **7.** (10 points) Please provide a detailed mechanism for the following transformation. Show all arrow pushing. Hint: This mechanism is from problem set 6. **8.** (10 points) Diastereomers **A** and **B** provide different products upon diazotization. Please explain why only one product is formed selectively in each reaction. Your explanation should include a **3-dimensional** mechanism for the formation of each product from the corresponding diazonium salt. In the concerted Tiffenean. Derijanor rearrangement, the migrating bond must be antiperiplanar to the leaving group. (Bolded bonds are antiperiplenar.) Name Cey **9.** (12 points) Please provide a synthesis of the indicated compound. All of the carbon atoms should be derived from **dimethyl malonate** and **alcohols containing three or fewer carbons**. You will receive partial credit for a complete retrosynthesis. **10.** (12 points) Please provide a synthesis of the indicated compound. All of the carbon atoms should be derived from **methyl acetate**. You will receive partial credit for a complete retrosynthesis.