Massachusetts Institute of Technology Organic Chemistry 5.13

Friday, September 26, 2003

Prof. Timothy F. Jamison

Hour Exam #1			
Name	SUGGESTED SOU	UTIONS (CA	IER ANTWERS POSSIBLE IN SOMI SES: PARTIAL CREDIT POSSIBLE IN OST CASES.
Official Da	(please both print and s	sign your name)	
<u>Опісіаі</u> не	citation Instructor		
Directions	: Closed book e.	xam, no books, i	notebooks, notes, etc. allowed.
However, c	calculators, rulers, and	d molecular mod	el sets are permitted.
you have a	_	der to gauge the	inning, in order to make sure that relative difficulty of each
Show all o	of your work if you w	vish to receive p	partial credit.
You should	l have 12 pages total:	6 exam pages	including this page, 4 pages of
reference i	nformation, and 2 bla	nk pages for scr	atchwork.
	Question:		Grader:
	1/	36 points	
	2/	20 points	
	3/	20 points	
	4/	24 points	
	Total:/	100 points	

a. (10 points) Determine the molecular formula that satisfies the following data (circle your final answer):
 EA (found): C, 37.02; H, 2.22; N, 18.50; and M⁺ = 227

b. (6 points) Calculate the **Index of Hydrogen Deficiency** (IHD) for the molecule in **a**, above (**circle** your final answer).

c. (5 points) An IR spectrum of the molecule in a appears on the following page. What functional group or groups correspond(s) to the 2 most intense peaks in the spectrum? Draw the structure of this/these group(s), showing all bonds (i.e. single, double, triple).

d. (10 points) Using the information in a, b, and c, above, and the ¹H NMR and ¹³C NMR spectra on the next page, determine a structure of this unknown molecule that is consistent with all data. Draw the structure of this molecule below (circle your final answer).

e. (5 points) **Provide an explanation** for the fact that the singlet at 9.4 ppm in the ¹H NMR spectrum appears so far downfield.

f. (EXTRA CREDIT, 5 points): What is this compound, and what is its most notorious physical property?

2. (20 points) Using only ¹H NMR spectroscopy, how would you conclusively distinguish between all 3 isomers (ortho, meta, and para) of bromophenol? Be as specific as necessary in order to differentiate ortho from meta, meta from para, and ortho from para. (Suggestion: Use chemical structures as part of your answer.)

DIFFERENTIATE ALL SPIN-SPIN COUPLING CAN

or

From THE ANOMER

each 2H, d (or dd, J=78, 2) J=7-8

1 (meta coupling) HESUSITE UP MIGHERE OF MAGNET USED, THIS COUPLING MAY OR MAY NOT BE EVIDENTIN H NMR SPECTRUM

- · JHa-Hb: 7-8Hz} Ha: d
- · JAB-Ha: 7-8Hz } Hb: dd
- · Hc: SAME PATTERN AS Hb : dd
- · Hd: " " " Ha = d

IF META COUPLINGS PETECTABLE, THEN EXECU PROTON HAS 1 ADDITIONAL 2HZ-COUPLING, i.g. JHa-HC, JHD-Hd, etc.

meta:

OH WILL BE SINGLET (OR SUM, J=2, Z IF

HE (OUR ONE) MOVET OF HIGH PLANE

ddort MGVET OF HIGH DUOUGH FIELD)

3. (20 points) An unknown compound X (containing only carbon, hydrogen, and oxygen) has m/z = 172 (M⁺) and 115, and its ¹³C NMR spectrum below. When treated with lithium aluminum hydride in ether, a single compound Y is produced, and its ¹H NMR spectrum is given below. In the space below the NMR spectra at the bottom of the page, draw the structures of X and Y. Circle your final answers and clearly indicate which is compound X (12 points) and which is compound Y (8 points).

4. (24 points) Mass spectrometry was performed on 5-phenyl-2-pentanone (below), and several signals corresponding to fragments (M_f⁺) were observed in the spectrum. Write the m/z value observed for M⁺ in the box provided (3 points). In each question below the m/z value for M_f⁺ is provided. Draw the structure of M_f⁺ in the corresponding box (3 points each). Also, write the molecular weight of the neutral species (M_{neutral}) formed in each fragmentation in the boxes on the right (1 point each). Finally, draw the structure of each (M_{neutral}) in the boxes on the right (3 points each). BE SURE TO INDICATE WHETHER EACH M_f⁺ and EACH M_{neutral} is a radical (i.e. has an unpaired electron).

a. (Write the structure of M_f^+ here.) $\bigoplus_{O \subseteq C} P_N \qquad (AcYLIUM)$ $m/z \text{ for } M_f^+ = 147$

(Write the structure of M_f^+ here.)

b. $m/z \text{ for } M_f^+ = 91$

