Problem Set #3

Due: March 3, 4:00 pm

1. Calculate the degree of unsaturation for $C_8H_{10}F_3NO$.

2. Assign *E-Z* configuration to each alkene.

3. Name the following alkenes.

4. For each of the following reactions, label the type of nucleophile: lone pair (n), pi bond (π) , sigma bond (σ) , and the type of electrophile: empty atomic orbital (a), polarized pi bond (π^*) , polarized sigma bond (σ^*) . Draw in all lone pairs and use curved arrows to show how the nucleophile attacks the electrophile and show the product of these one-step reactions.

a)
$$H \to 0$$
 \longrightarrow

c)
$$H_3C$$
 S^-

d)
$$H_3C \stackrel{CH_3}{\circ} + HC \equiv C^-$$

f)
$$H-CI$$
 + $A+CI$ + $A+CI$ + $A+CI$

g) Show the initial orbital overlap for reaction f.

- 5. The equilibrium constant for the ring-inversion of fluorocyclohexane is 1.5 at 25 °C. Calculate the fraction of the axial conformer at this temperature.
- a) Draw fluorocyclohexane and its ring-flipped conformer.

b) Write the equilibrium equation.

$$K_{eq} =$$

c) Solve for the percentage of axial conformer at equilibrium.

- 6. Calculate ΔH for each of the following reactions. (See the table at the end of this problem set).
- a) $CH_3CH_2CI + HI \longrightarrow CH_3CH_2I + HCI$

b) $CH_3CH_2OH + HBr \longrightarrow CH_3CH_2Br + H_2O$

7. a) Draw an energy diagram for a two-step reaction passing through an intermediate that is less stable than both the starting material and the product, where the product is more stable than the starting material and the activation energy for proceeding from the intermediate to the product is higher than that for proceeding from the intermediate to the starting material.

b) Which species does the first transition state resemble more closely (circle one)

starting material intermediate

c) Which species does the second transition state resemble more closely (circle one)

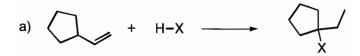
product intermediate

d) Which transition state is involved in the rate determining step of the overall reaction (circle one)?

first second

- e) The reaction is: exergonic endergonic
- f) ΔG is: positive negative
- g) K_{eq} is: >1 <1 O

- 8. Consider the following reaction.
- a) Show the product (ignore stereochemistry).


- b) How many stereoisomers will form during this reaction?
- c) Show the mechanism for arriving at **each** of the stereoisomers.

- d) Label the relationships between the stereoisomers.
- e) The products are (circle one): optically active or optically inactive

9. Reaction **b** proceeds 2.5 X10⁸ times faster than reaction **a**. Explain with mechanisms and reaction coordinate diagrams.

b)
$$H_3CO H + H_-Br \longrightarrow H_3CO - C - CH_3 H$$

10. Show the mechanism for each reaction.

c)
$$\longleftrightarrow$$
 + H-X \longrightarrow $\overset{\times}{\bigvee}$

From: Mechanism + Mery in War ic Chamistry 3rd ed Momas H. Lowry + Kathlen s. Richardson 1987, Harper Collins Philipper 2.3 Thermochemistry 161

Table 2.8 BOND DISSOCIATION ENERGIES AND AVERAGE BOND ENERGIES FOR VARIOUS TYPES OF BONDS

Bond Dissociation Energies^{a,b}—Single Bonds: Diatomic Molecules

Bond	Energy	Bond	Energy	Bond	Energy
H—H D—D F—F Cl—Cl Br—Br I—I	104.2 [436.0] 106.0 [444.5] 38 [159] 58 [243] 46.0 [192] 36.1 [151]	F—Cl F—Br F—I Cl—Br Cl—I	61 [255] 60 [251] 58 [243] 52 [218] 50 [209]	H—F H—Cl H—Br H—I	135.8° [568] 103.0° [431] 87.5° [366] 71.3° [298]

Polyatomic Molecules

Bond	Energy	Bond	Energy
H—CH ₃	104 [435]	CH ₃ CH ₂ —CHCH ₂	89 [372]
H-CH ₂ CH ₃	98 [410]	$CH_3CH_2-C_6H_5$	90 [377]
H—CHCH ₂	103 [431]	CH ₂ CH—CHCH ₂	100 [418]
$H-C_6H_5$	103 [431]	HCC—CCH	150 [628]
H—CCH	$\sim 125 [523]$	C_6H_5 — C_6H_5	100 [418]
$H-CH_2C_6H_5$	85 [356]	$CH_2CH-C_6H_5$	99 [414]
H-CH ₂ CHCH ₂	85 [356]		
H-CH ₂ OH	93 [389]	CH_3 — $COCH_3$	82 [343]
H-CF ₃	104 [435]	CH ₃ CH ₂ —COCH ₃	79 [331]
H—CCl	96 [401]	CH ₃ —CN	122 [510]
$H-COCH_3$	87.5 [366]	CH ₂ CH—COCH ₃	89 [372]
H—CN	130 [543]	CH₂CH—CN	128 [536]
		CH ₃ CO—COCH ₃	83 [347]
F-CH ₃	108 [451]	NCCN	144 [602]
Cl—CH ₃	83.5 [349]	CF_3 — CF_3	97 [406]
Br—CH ₃	70 [293]	н—он	119 [498]
I—CH ₃	56 [234]	$H-O_2H$	90 [377]
F-CH ₂ CH ₃	106 [443]	H—SH	90 [377]
Cl—CH ₂ CH ₃	81.5 [341]	H — OCH_3	102 [427]
$Br-CH_2CH_3$	69 [289]	H — OC_6H_5	85 [356]
I — CH_2CH_3	53.5 [224]	$H-O_2CCH_3$	112 [469]
Cl—CHCH ₂	84 [351]		
$F-C_6H_5$	116 [485]	HO—CH ₃	91.5 [383]
$Br-C_6H_5$	72 [301]	$HO-CH_2CH_3$	91.5 [383]
$I-C_6H_5$	65 [272]	$HO-C_6H_5$	103 [431]
$F-CF_3$	129 [540]	$HO-COCH_3$	109 [456]
Cl—CF ₃	85 [356]		00 50073
$Br-CF_3$	70 [293]	CH ₃ O—CH ₃	80 [335]
I—CF ₃	54 [226]	CH ₃ O—CH ₂ CH ₃	80 [335]
F—CCl ₃	106 [444]	CH ₃ O—CHCH ₂	87 [366]
Cl—CCl ₃	73 [305]	CH ₃ O-C ₆ H ₅	91 [381]
Br—CCl ₃	54 [226]	CH ₃ O—COCH ₃	97 [406]
F—COCH ₃	119 [79]	110 011	F1 (010)
Cl—COCH ₃	83.5 [349]	но-он	51 [213]
I — $COCH_3$	52.5 [220]	HO—Br	57 [238]
		CH_3O-OCH_3	36 [151]
CH_3 — CH_3	88 [368]		****
CH_3 — CH_2CH_3	85 [356]	H_2N-H	103 [431]
CH ₃ —CH ₂ OH	83 [347]	H_2N — CH_3	79 [331]

he reaction in lange for the 2.40 is much On the other

(2.39)

(2.40)

greater than urn is a funcrespectively lecules being

(2.41)

lecules being

(2.42)

(2.43)

eactions is to butions from in Table 2.8. gies; that is,

(2.44)

of the freergy changes and energies to molecule averaging is a molecule

d by the use

he rate depends bence of special ny of activation.

andard states is enall substances

Table 2.8 (Continued)

Energy	Bond	Energy
100 [418] 92 [385] 93 [389] 117 [490] 72 [301]	$H_{2}N$ — $CH_{2}CH_{3}$ $H_{2}N$ — $C_{6}H_{5}$ $H_{2}N$ — $COCH_{3}$ $O_{2}N$ — NO_{2} $O_{2}N$ — $COCH_{3}$	78 [326] 91 [381] ~96 [401] 13.6 [57] 97 [406]
	100 [418] 92 [385] 93 [389] 117 [490]	H ₂ N—CH ₂ CH ₃ H ₂ N—C ₆ H ₅ H ₂ N—COCH ₃ 100 [418] O ₂ N—NO ₂ 92 [385] O ₂ N—COCH ₃ 93 [389] 117 [490] 72 [301]

Multiple Bonds

Bond	Energy	Bond	Energy
O=O O=CO O=CH ₂ O=NH HN=NH CH ₂ =CH ₂	119 [498] 128 [536] 175 [732] 115 [481] ~109 [456] 163 [682]	CF_2 = CF_2 CH_2 = NH C = O N = N N = CH HC = CH	76.3 [319] ~154 [644] 257 [1075] 226 [946] 224 [937] 230 [962]

Representative Average Bond Energies^d—Single Bonds

	-		•	_	-			
	С	N	О	F	Cl	Br	I	Si
H C N O F Cl Br I Si	100 [418] 81 [339]	93 [389] 69 [289] 38 [159]	110 [460] 84 [351] 43 [180] 33 [138]	136 [569] 105 [439] 65 [272] 50 [209]	103 [431] 79 [331] 48 [201] 50 [209] 60 [251]	88 [368] 67 [280] 53 [222] 60 [251] 53 [222]	71 [297] 57 [238] 57 [238] 67 [280] 50 [209] 43 [180]	72 [301] 69 [289] 103 [430] 141 [586] 96 [402] 69 [289] 50 [209] 45 [188]

Multiple Bonds

Elements	Single bond	Double bond	Triple bond
O-O	33 [138]	96 [402]	
N-N	38 [159]	100 [418]	226 [946]
C—C	81 [339]	148 [619]	194 [812]
C-O	84 [351]	172 [720]	
C—N	69 [289]	148 [619]	213 [891]

^a From Gordon, A. J.; Ford, R. A. "The Chemists Companion"; Wiley: New York, 1972. Reprinted by permission of John Wiley & Sons. Copyright 1972

of Benson's gas phase. almost alwa even better

Bensor ΔH_f° 's of th ligands. Fo in the grou notation th first and th experiment for a new n butions fro (-42.17 k](-84.35 kJ) $\Delta H_f^{\circ} = -4$ -20.16 -4mental ΔH and -103.8densed-pha hydrogen b are not ado

Tables 9.1 for addi a carbon-ca since all car refers to a refers to an ent X; and (abbreviation

Guide to th

1. ΔH_f° when that g: pressure and are in calori to other ten

2. In o arbitrary val values obtain

In simp ΔH_f° of the bond affect important co lar enthalpie

John Wiley & Sons, Inc.

b In kcal mol⁻¹. Numbers in brackets are values in kJ mol⁻¹.

c Benson, S. W. J. Chem. Educ. 1965, 42, 502. Reprinted by permission of the Division of Chemical Education.

^dFrom Waser, J.; Trueblood, K. N.; Knobler, C. M. "Chem One"; McGraw-Hill: New York, 1976. Adapted by permission of McGraw-Hill.