Handout #3, 5.12 Spring 2003, 2/12/03 Physical Properties: Bond Length, Bond Strength & Acidity

A. Bond Lengths: mostly dependent on atomic size, bond order, and hybridization

Bond Lengths (Å)

$$sp^3-sp^3$$
 C-C 1.54 sp^3-sp^3 C-O 1.42 sp^2-sp^2 C=C 1.34 sp^2-sp^2 C=O 1.22 $sp-sp$ C=C 1.20

 Multiple Bonding: Bond length depends strongly on bond order (length: single > double > triple)

Bond Lengths (Å)

$$sp^3$$
 C-H 1.09 sp^3-sp^3 C-C 1.54 sp^2 C-H 1.086 sp^3-sp^2 C-C 1.50 sp C-H 1.06 sp^3-sp C-C 1.47

• Effect of hybridization on length of single bonds: C–H and C–C bonds shorten slightly with increased *s* character on carbon

B. Bond Strengths/Bond Dissociation Energies (BDEs): Energy for **homolytic** bond cleavage to uncharged radical fragments

$$X \xrightarrow{X} X$$
 $X \cdot + X \cdot$

Common Bond Strengths (kcal/mol)

- Bond strengths are bond energies for a certain bond averaged over many different molecules.
- Bond dissociation energies are for a particular molecule and are dependent on the specific molecular structure (Bond Strength ± 20 kcal/mol)
- Multiple Bonding: Bond strength depends strongly on bond order (strength: single < double < triple)

C. Acidity of Organic Molecules

Functional Group	<u>Acid</u>	Approximate pK _a Values (in water)	Conjugate Base increasing basicity
alkane- <i>sp</i> ³	H –CH ₃	48	⁻CH ₃
alkene- <i>sp</i> ²	H-CH=CH	H ₂ 44	⁻CH=CH ₂
amine	H-NH ₂	38	¬NH ₂
hydrogen	H –H	35	-н
alkyne- <i>sp</i>	H –C≡CH	25	⁻C≡CH
alcohol	H-OCR ₃	17	-OCR ₃
water	H –OH	15.7	-ОН
thiol	H-SR	10–11	-SR
ammonium	H-+NR ₃	10–11	NR ₃
nitrile (cyanide)	H –C≡N	9.2	-C≡N
phenol	H –OAr	8–11	⁻OAr
carboxylic acid	H-OC(O)	R 4–5	TOC(O)R
	H –F	3.17	-F
hydronium	H – ⁺ OH ₂	-1.74	OH ₂
	H-CI	-7	-CI
	H –I	-10	-1
increasing acidity			

- Acidity increases across a row: H-C < H-N < H-O < H-F (electronegativity)
- Acidity increases down a period: H-F < H-Cl < H-Br < H-I (size)
- Neutral species less acidic than corresponding positively charged species: $H-OH < H-^+OH_2$ pK_a data from: Advanced Organic Chemisry, 4th Ed., J. March