Handout #3, 5.12 Spring 2003, 2/12/03 Physical Properties: Bond Length, Bond Strength & Acidity A. Bond Lengths: mostly dependent on atomic size, bond order, and hybridization #### **Bond Lengths (Å)** $$sp^3-sp^3$$ C-C 1.54 sp^3-sp^3 C-O 1.42 sp^2-sp^2 C=C 1.34 sp^2-sp^2 C=O 1.22 $sp-sp$ C=C 1.20 Multiple Bonding: Bond length depends strongly on bond order (length: single > double > triple) #### **Bond Lengths (Å)** $$sp^3$$ C-H 1.09 sp^3-sp^3 C-C 1.54 sp^2 C-H 1.086 sp^3-sp^2 C-C 1.50 sp C-H 1.06 sp^3-sp C-C 1.47 • Effect of hybridization on length of single bonds: C–H and C–C bonds shorten slightly with increased *s* character on carbon **B. Bond Strengths/Bond Dissociation Energies (BDEs):** Energy for **homolytic** bond cleavage to uncharged radical fragments $$X \xrightarrow{X} X$$ $X \cdot + X \cdot$ ## Common Bond Strengths (kcal/mol) - Bond strengths are bond energies for a certain bond averaged over many different molecules. - Bond dissociation energies are for a particular molecule and are dependent on the specific molecular structure (Bond Strength ± 20 kcal/mol) - Multiple Bonding: Bond strength depends strongly on bond order (strength: single < double < triple) ### C. Acidity of Organic Molecules | Functional Group | <u>Acid</u> | Approximate pK _a Values
(in water) | Conjugate Base increasing basicity | |--------------------------------|---|--|------------------------------------| | alkane- <i>sp</i> ³ | H –CH ₃ | 48 | ⁻CH ₃ | | alkene- <i>sp</i> ² | H-CH=CH | H ₂ 44 | ⁻CH=CH ₂ | | amine | H-NH ₂ | 38 | ¬NH ₂ | | hydrogen | H –H | 35 | -н | | alkyne- <i>sp</i> | H –C≡CH | 25 | ⁻C≡CH | | alcohol | H-OCR ₃ | 17 | -OCR ₃ | | water | H –OH | 15.7 | -ОН | | thiol | H-SR | 10–11 | -SR | | ammonium | H-+NR ₃ | 10–11 | NR ₃ | | nitrile (cyanide) | H –C≡N | 9.2 | -C≡N | | phenol | H –OAr | 8–11 | ⁻OAr | | carboxylic acid | H-OC(O) | R 4–5 | TOC(O)R | | | H –F | 3.17 | -F | | hydronium | H – ⁺ OH ₂ | -1.74 | OH ₂ | | | H-CI | -7 | -CI | | | H –I | -10 | -1 | | increasing
acidity | | | | - Acidity increases across a row: H-C < H-N < H-O < H-F (electronegativity) - Acidity increases down a period: H-F < H-Cl < H-Br < H-I (size) - Neutral species less acidic than corresponding positively charged species: $H-OH < H-^+OH_2$ pK_a data from: Advanced Organic Chemisry, 4th Ed., J. March