10.675 LECTURE 7

RICK RAJTER

1. Today

- → Meaning of HF Eigenvalues (Koopman's Thereom).
- \rightarrow Restricted HF (Roothan Equations).
- \rightarrow Basis Sets
- \rightarrow Orthoganalization
- \rightarrow SCF procedure

2. Error Evaluation

Reminder, ϵ_a 's are positive, ϵ_r 's are negative.

 $\Delta = \text{true energy - approximation}$

Approximation	Energy	Δ	Energy	Δ
Frozen Orbitals (shell shifts)	ϵ_a	_	ϵ_r	_
No electron correlation (repulsion)	ϵ_a	+	ϵ_r	_
No Geometry Relaxation (sp3 to sp2)	ϵ_a	_	ϵ_r	_

Note, the errors in the "no electron" correlation cancel out.

3. "Restricted" (closed-shell paired electrons)

HF: The Roothan Equations.

Integrate out the degree's of freedom.
$$\chi(\vec{x}) = \begin{cases} \Psi_i(\vec{r})\alpha(\omega) \\ \Psi_j(\vec{r})\beta(\omega) \end{cases}$$

$$f(\vec{x})\chi_i(\vec{x}) = \epsilon_i\chi_i(\vec{x}) = f(\vec{x})\Psi_j(\vec{r})\alpha(\omega_1) = \epsilon_j\Psi_j(\vec{r})\alpha(\omega_1)$$
 solve for spin
$$\beta$$

$$[\int dw_q\alpha(w_1)f(\vec{x})\alpha(w_1)]\Psi_j(\vec{r}) = \epsilon_j\Psi_i(\vec{r})$$
 Plugin
$$f(\vec{x}_1) = h(\vec{r})\sum_c^N \int dx_2\chi_1^*(\vec{x}_2)r_1^{-1}(1-P_{12})\chi_2(\vec{x}_2)$$

$$\sum_c^N \to \sum_{c_\alpha}^{N/2} + \sum_{c_\beta}^{N/2} f(\vec{r}_1)\Psi_j(\vec{r}) + \sum_c^{N/2} \int dw_1dw_2dr_2\alpha^*(w_1)\Psi_1^*(r_2)\alpha^*(w_2)r_{12}^{-1}\Psi_i(r_2)\alpha(w_2)alpha(w_1)\Psi_j(r_1) + \sum_{c_\alpha}^{N/2} \int dw_1dw_2dr_2\alpha^*(w_1)\Psi_1^*(r_2)\alpha^*(w_2)r_{12}^{-1}\Psi_i(r_2)\alpha(w_2)alpha(w_1)\Psi_j(r_1) + \sum_{c_\alpha}^{N/2} \int dw_1dw_2dr_2\alpha^*(w_1)\Psi_1^*(r_2)\alpha^*(w_2)r_{12}^{-1}\Psi_i(r_2)\alpha(w_2)alpha(w_1)\Psi_j(r_1) + \sum_{c_\alpha}^{N/2} \int dw_1dw_2dr_2\alpha^*(w_1)\Psi_1^*(r_2)\alpha^*(w_2)r_{12}^{-1}\Psi_i(r_2)\alpha(w_2)alpha(w_1)\Psi_j(r_1) + \sum_{c_\alpha}^{N/2} [2J_a(1) - K_a(1)] f(Y_j(\vec{r})) = \epsilon_j\Psi_j(\vec{r})$$
 Meaning only spatial orbitals are left after integrating.

Date: Fall 2004.

4. Basis Set

Functions are not necessarily orthonormal.

$$\Psi_i \sum_{\mu=1}^k C_{\mu} \phi_{mu} \\ i = 1, 2, 3, 4, ...k$$

Where Ψ_i is the spatial vector, and ϕ is the trial expansion.

5. ROOTHAN EQUATIONS

$$\bar{F}\bar{C} = \bar{S}\bar{C}\bar{\epsilon}$$

Where $\bar{\epsilon}$ is the diagonal set.
Density Matrix $\rho(\vec{r}) = 2\sum_{a}^{N}$

Density Matrix
$$\rho(\vec{r}) = 2\sum_{a}^{N/2} |\Psi_1(\vec{r})|^2$$

$$= 2\sum_{a}^{N/2} \sum_{\nu} C_{\nu_o}^* \phi_r^*(\vec{r}) \sum_{\mu} C_{\mu_o} \phi_{\mu}(r)$$

$$= \sum_{\mu\nu} 2(\sum_{a}^{N/2} C_{\mu} C_{n} u) \phi_{\mu}(\vec{r}) \phi_{\nu}^*(\vec{r})$$

$$= \sum_{\mu\nu} P_{\mu\nu} \phi_{\mu}(\vec{r}) \phi_{\nu}^*(\vec{r})$$

$$= \sum_{\mu\nu} 2(\sum_{a} C_{\mu}C_{n}u)\phi_{\mu}(r)$$
$$= \sum_{\mu\nu} P_{\mu\nu}\phi_{\mu}(\vec{r})\phi^{*}(\vec{r})$$

$$= \sum_{\mu\nu} P_{\mu\nu} \phi_{\mu}(\vec{r}) \phi_{\nu}^*(\vec{r})$$

 $P_{\mu\nu}$ is the density matrix $\bar{\bar{P}} \Rightarrow \bar{\bar{F}}(\bar{\bar{P}})$

$$f\sum_{\nu} C_{\nu_i} \phi_{\nu} = \epsilon_i \sum_{\nu} C_{\nu_i} \phi_i$$

 $f\sum_{\nu} C_{\nu_i} \phi_{\nu} = \epsilon_i \sum_{\nu} C_{\nu_i} \phi_i$ Multiply by * and integrate.

$$\Rightarrow \sum_{\nu} \int dr_1 \phi_{\mu}^* f \phi_{\nu} = \epsilon \sum_{\nu} C_{v_i} \int dr_1 \phi_{\nu}^* \phi_{\mu}$$

The first term $(\int dr_1 \phi_{\mu}^* f \phi_{\nu})$ is the $F_{\mu\nu}$ "Fock" matrix. The second term $(dr_1\phi_{\nu}^*\phi_{\mu})$ is the $S_{\mu\nu}$ overlap matrix.

6. Solving Roothan Equations

Solve self consistently through basis set orthogonalization.

$$\int dr \phi_{\mu}^*(r) \phi_{\nu}(r) = S_{\mu\nu}$$

We want a transformation matrix \bar{X} that will orthogonalize S such that

$$\phi'_{\mu} = \sum_{\mu} \phi_{\nu}$$

$$\mu = 1, 2, 3, 4, ...k$$

$$\int dr \phi_{\nu}^{*}(r) \phi_{\nu}(r) = \delta_{\mu\nu}$$

$$\delta_{\mu\nu} = \int dr \left[\sum_{x} x_{\lambda\mu}^{*} \phi_{\lambda}^{*}(r)\right] \left[\sum_{\sigma} \chi_{\sigma} \phi_{\sigma}(r)\right]$$

$$= \sum_{\lambda} \sum_{\sigma} \chi_{\lambda\mu}^* \int \dots$$

$$\bar{\bar{X}} + \bar{\bar{S}}\bar{\bar{X}} = 1$$
 with many possible choices of $\bar{\bar{X}}$ $\bar{\bar{X}} = \bar{\bar{S}}^{-1/2} \Rightarrow \bar{\bar{S}}^{-1/2}\bar{\bar{S}}\bar{\bar{S}}^{-1/2} = \bar{\bar{S}}^{-1/2}\bar{\bar{S}}^{1/2} = \bar{\bar{S}}^{0} = 1$

$$\bar{\bar{F}}\bar{\bar{C}} = \bar{\bar{S}}\bar{\bar{C}}\bar{\bar{\epsilon}} \text{ let } \bar{\bar{C}} = \bar{\bar{X}}\bar{\bar{C}}'\bar{\bar{F}}\bar{\bar{X}}\bar{\bar{C}}' = \bar{\bar{S}}\bar{\bar{X}}\bar{\bar{C}}'\bar{\bar{\epsilon}}$$

Multiply by \bar{X}^* so $\bar{F}'\bar{X}^*\bar{F}\bar{X}$ then $\bar{F}'\bar{C}'=\bar{C}\bar{\epsilon}$

Transform to real C's.

7. SCF - Self Consistent Field Procedure

- 1) Specify System: Nuclear positions (\vec{r}_k) , Atomic #'s (Z_k) , # electrons N, "basis set" (ϕ_{μ})
- 2) Calculate $S_{\mu\nu}$, $H_{\mu\nu} = \int dr \phi_{\mu}^* h \phi_{\nu}$, and $(\mu\nu, \lambda\sigma)$
- 3) Diaganolize $\bar{\bar{S}} \Rightarrow \bar{\bar{X}} = \bar{\bar{S}}^{-1/2}$
- 4) Guess \bar{P} (density matrix)
- 5) Calculate $\bar{\bar{F}}$ (fock matrix)
- 6) $\bar{\bar{F}}' = \bar{\bar{X}} * \bar{\bar{F}} \bar{\bar{X}}$
- 7) Diagonalize $\bar{\bar{F}}' \Rightarrow \bar{\bar{C}}' and \bar{\bar{\epsilon}}$
- 8) $\bar{\bar{C}} = \bar{\bar{X}}\bar{\bar{C}}'$

- 9) Calculate a new $\bar{\bar{P}}$ from $\bar{\bar{C}}$ 10) Converged? Yes, done. No, goto step 5.