
VIII. Phase Transformations 

Lecture 39: Reaction-limited Phase Separation 

MIT Student 

Last time we presented the classical Cahn-Hilliard theory for phase trans­
formations in closed systems characterized by a conserved order parameter 
(concentration). In this lecture we adapt the model to electrochemical sys­
tems by including Faradaic surface reactions. The resulting model describes 
evolution of a conserved parameter in an open system that is in contact 
with an infinite reservoir at fixed chemical potential. This model is a gener­
alization of the Allen-Cahn equation which describes the evolution of non-
conserved order parameters during phase transformation. 

1	 Phase transformation during intercalation and 
adsorption 

The Cahn-Hilliard model, which was derived in the previous lecture, is: 

∂c 
= (

t 
∇ · Mc

∂
∇µ) 

(1) 
µ = µ̄(c) −∇ · K∇c 

where µ is a diffusional chemical potential for an inhomogeneous system. 
Two boundary conditions are imposed. The first is a variational boundary 
condition (see 2009 notes for derivation): 

 
n̂ · K∇c +  "γs

′ (c) = 0	 (2)

γs  is surface tension and may v

(

ary with concen

)

tration and orientation. Phys­
ically, this boundary condition avoids discontinuity in bulk chemical poten­
tial at the boundary by prohibiting gradients (bulk phase interface). True 
surface chemical potential should come from a separate surface contribution 
to free energy, which we have neglected so far. 
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The second boundary condition equates the flux across the boundary to 
a reaction rate: 

R = n̂ · F" = −n̂ · Mc∇µ (3)

Butler-Volmer is a logical choice for reaction rate kinetics: 

[ 
R = R e(1−α)eη/kT − e−αeη/kT 

0 

]
(4a) 

Recall that the variables in the Butler-Volmer equation are: 

 k0aαa1 −α

R0 = + (exchange current) 
γA 

η = ∆φ −∆φeq (overpotential) (4b) 
γA = activity coefficient of the transition state 

1 
= for excluded volume 

1 − c 

∆φ = φe − φ is the interfacial voltage, φ is the electrode potential, and φe 

is the electrolyte potential. According to our general theory of reactions 
in concentrated solutions, R should depend on both c and µ. But since µ 
depends on gradients in c, the reaction rate must also, which is different from 
classical chemical reaction kinetics. We now have a Butler-Volmer equation 
for an inhomogeneous system. 

Consider the Faradiac reaction in LiFePO4: 

Li +  
(s) → Li + e− + VLi(s) 

(5) 

Li(s) is lithium in the solid, and VLi(s) 
is a lithium vacancy in the solid. The 

diffusional chemical potential (see lecture 13) of lithium is defined using the 
Cahn-Hilliard formalism: 

µ = µ(Li(s)) − µ(VLi(s) 
) = kT  ln a = µ̄(c) −∇ · K∇c (6) 

The chemical potentials of Li+ and e− are: 

µ +
+ = µ(Li ) = kT  ln a+ + eφ 

(7) 
µ− = µ(e−) = − eφe 

If we ignore variations in the Li+ activity in the electrolyte (a+ = 1 ), then 
∆φ is the battery voltage (up to a constant) and µ+ + µ  = −e∆φ ≡ µext. −
µext is an “external chemical potential” that drives the reaction of Li+ +e−. 
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At equilibrium, the reaction does not proceed in either direction (zero 
net reaction rate). Thus µ = µ+ + µ  and∆ φ = ∆φeq. We can use this −
equilibrium condition to solve for the equilibrium interfacial voltage: 

µ = µ+ + µ  = kT ln a− + − e∆φeq 

kT ln a
∆ = + φeq  

− µ	 (8)
e 

When an external potential µext is applied, the system is displaced from 
equilibrium and the interfacial voltage becomes: 

kT ln a+ − (µ + µ ) kT ln a  µ
∆φ = +   − = + − ext (9) 

e e 

The resulting overpotential is: 

µ  µ
η = ∆φ − ∆ ext φeq = 

−
(10) 

e 

Thus by varying µext with an applied field, we can control the battery voltage 
and current. 

2	 Reaction-limited adsorption and phase transfor­
mation 

Now we will use the inhomogeneous Butler-Volmer equation to develop a 
model for 2D surface adsorption and intercalation into quasi-2D crystals, as 
illustrated in figure 1. The following two assumptions are made: 

• Fast transport and no phase separation in depth (z) direction in a bulk 
crystal. 

• No transverse diffusion along surface directions (x, y).

Under these assumptions, the CH+reaction model reduces to: 

∂c 
= −R (c, µ, µext) (11)

∂t 

which is a nonlinear PDE for c, since µ = µ̄(c) − ∇· K∇c. Applying the 
symmetric Butler-Volmer hypothesis (α = 1/2) produces: 

( )    eη µ  µ
R(c, µ, µext) = 2R0(c, µ) sinh = 2R0(c, µ) sinh 

− ext 

2kT	

(

kT 
k

)

 
0
√ (12) 	aa

( ) = + 
R c, µ = k eµ/kT 

0 0(1 − c)
γA 

√

3




Lecture 39: Reaction-limited phase separation 10.626 (2011) Bazant


Figure 1: The reaction-limited model is derived for a 2D or quasi-2D system 
and assumes no transverse surface diffusion in the (x, y) plane. 

This is a highly nonlinear second-order PDE, but takes a simpler form for 
small overpotentials (η = µ−µext 

e << kT ). By performing a Taylor expansion 
on sinh(x) and keeping only the leading terms, the approximation sinh(x) ≈ 
x may be made for small x. Equation 11 becomes: 

∂c R0(c, µ) 
(13)

∂t 
≈ (µ  

 ext 
kT

− µ) 

This equation describes reaction kinetics for small overpotentials in an in­
homogeneous system. 

3 Reaction-limited spinodal decomposition 

Now let’s analyze spinodal decomposition in a system governed by Eq. 13. 
For simplicity, assume R0(c, µ)/kT = r0 = constant. The governing equa­
tion is: 

∂c  
= r0 

(
µext − ḡ′(c) +  κ

∂
∇2c

)
(14)

t 

This is the Allen-Cahn equation with a forcing potential, and τ = 1 is the r
characteristic

0 

 reaction time to fill a site on the active surface (or channel). 
Let c(x, t) = c 0 + ν, where c ik

0 is a constant and ν = εe xest is a small 
perturbation. We want to find the amplification factor s in terms of the 
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(a) Adsorption/desorption of a surface 
monolayer. 

(b) A quasi-2D intercalation crystal with 
fast diffusion in the z direction approxi­
mates LiF eP O4. 
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Figure 2: Linear stability of the forced Allen-Cahn equation as a function of 
wavenumber k. Instability occurs inside the spinodal points, where ḡ′′(c0) < 
0. 

wave number k to determine which frequencies will be amplified. Substitute 
c = c0 + ν into Eq. 14: 

∂(c0 + ν) 
= r0 

(  
µext − ḡ′(c0) − νḡ′′(c0) + κ ∇2(c0 + ν) (15)

∂t 

For a homogeneous system at equilibrium ḡ′(c0) = µ ext, and the

)

 equation 
simplifies to: 

∂ν  
= r0 −νḡ′′(c 2

0) +  κ∇ ν (16)
∂t 

Substituting ν = εeikxest, we obtain:

(

 

)

 
s = −r0 ḡ′′(c0) +  κk2 (17) 

which is plotted in figure 2. s is

(

 only positiv

)

e for values of c0 between 
the spinodal points, and the most unstable wavelength is k = 0. For a 
finite system of size L, only a discrete spectrum of k = 2πn , n  = 0, 1, 2, . . . L
are permitted. kmax = 2π 

L in a discrete system, and therefore λmax ∼ L. 
We expect to see phase separation into a few large domains on the order 
of the system size. However, keep in mind that the probability of finding 
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(a) c ∼ c0 inside spinodal (b) The initial stages of de- (c) Few large structures λ ∼ 
µext = µ̄(c0) held constant. composition. L. 

Figure 3: Evolution of Eq. 14, the forced Allen-Cahn equation. 

a long-wavelength perturbation decreases with increasing wavelength. A 
numerical simulation of Eq. 14 is presented in figure 3. In contrast to 
Cahn-Hilliard evolution, there is no characteristic wavelength apparent in 
the microstructure. 
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