VIII. Phase Transformations

Lecture 39: Reaction-limited Phase Separation

MIT Student

Last time we presented the classical Cahn-Hilliard theory for phase trans-
formations in closed systems characterized by a conserved order parameter
(concentration). In this lecture we adapt the model to electrochemical sys-
tems by including Faradaic surface reactions. The resulting model describes
evolution of a conserved parameter in an open system that is in contact
with an infinite reservoir at fixed chemical potential. This model is a gener-
alization of the Allen-Cahn equation which describes the evolution of non-
conserved order parameters during phase transformation.

1 Phase transformation during intercalation and
adsorption

The Cahn-Hilliard model, which was derived in the previous lecture, is:

(1)

where p is a diffusional chemical potential for an inhomogeneous system.
Two boundary conditions are imposed. The first is a variational boundary
condition (see 2009 notes for derivation):

i+ (KVe+9,(c)) =0 (2)

v, is surface tension and may vary with concentration and orientation. Phys-
ically, this boundary condition avoids discontinuity in bulk chemical poten-
tial at the boundary by prohibiting gradients (bulk phase interface). True
surface chemical potential should come from a separate surface contribution
to free energy, which we have neglected so far.
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The second boundary condition equates the flux across the boundary to
a reaction rate:

R=#n-F=—h-McVpu (3)

>

Butler-Volmer is a logical choice for reaction rate kinetics:

R= Ry, [e(l—a)en/kT - e—aen/kT (4&)

Recall that the variables in the Butler-Volmer equation are:

a . l—a
B koa“ay

Ro =
YA
n = A¢p — Ay (overpotential)

v4 = activity coefficient of the transition state

(exchange current)

(4b)

=1 L . for excluded volume
A¢p = ¢, — ¢ is the interfacial voltage, ¢ is the electrode potential, and ¢,
is the electrolyte potential. According to our general theory of reactions
in concentrated solutions, R should depend on both ¢ and p. But since u
depends on gradients in ¢, the reaction rate must also, which is different from
classical chemical reaction kinetics. We now have a Butler-Volmer equation
for an inhomogeneous system.
Consider the Faradiac reaction in LiF'ePQy:

Ligy = Lit + e + Vi, (5)

Li(s) is lithium in the solid, and Vf;,, is a lithium vacancy in the solid. The
diffusional chemical potential (see lecture 13) of lithium is defined using the
Cahn-Hilliard formalism:

p=p(Li)) — p(Vii,)) = kT'Ina = ji(c) = V- KVc (6)
The chemical potentials of Li*t and e~ are:

py = u(Lit) =kTnay + e¢

He = p(e) = —co ")

If we ignore variations in the Lit activity in the electrolyte (a; = 1), then
A¢ is the battery voltage (up to a constant) and pu4 + p— = —eAd = piest-
ezt is an “external chemical potential” that drives the reaction of LiT +e™.
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At equilibrium, the reaction does not proceed in either direction (zero
net reaction rate). Thus g = py + p— andA ¢ = Apey. We can use this
equilibrium condition to solve for the equilibrium interfacial voltage:

w= 4+ p_ = lena+ - €A¢eq
kT'lnay, — p (8)
A(ﬁeq:i—’—

e
When an external potential u.,: is applied, the system is displaced from
equilibrium and the interfacial voltage becomes:

ETlnay — (py +p-)  kTInay — freg
e e

A¢ =

(9)

The resulting overpotential is:

n=Ad— Adeg = H— Heat (10)

e

Thus by varying pe,: with an applied field, we can control the battery voltage
and current.

2 Reaction-limited adsorption and phase transfor-
mation
Now we will use the inhomogeneous Butler-Volmer equation to develop a

model for 2D surface adsorption and intercalation into quasi-2D crystals, as
illustrated in figure 1. The following two assumptions are made:

e Fast transport and no phase separation in depth (z) direction in a bulk
crystal.

e No transverse diffusion along surface directions (z,y).
Under these assumptions, the CH+reaction model reduces to:

de _
ot

—R (c,,u, Mea:t) (11)

which is a nonlinear PDE for ¢, since p = ji(¢c) — V- KVe. Applying the
symmetric Butler-Volmer hypothesis (o = 1/2) produces:

2kT kT
ko+/
Ro(e,p) = "V = ky(1— o) V/en/MT

YA

R(c, t, prext) = 2Ro(c, p) sinh (ﬂ) = 2Ry(c, p) sinh (M‘Me:mf)
(12)
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(a) Adsorption/desorption of a surface (b) A quasi-2D intercalation crystal with
monolayer. fast diffusion in the z direction approxi-

mates LiF'ePOy.

Figure 1: The reaction-limited model is derived for a 2D or quasi-2D system
and assumes no transverse surface diffusion in the (x,y) plane.

This is a highly nonlinear second-order PDE, but takes a simpler form for
small overpotentials (n = #=£<et << kT). By performing a Taylor expansion
on sinh(x) and keeping only the leading terms, the approximation sinh(z) ~
r may be made for small z. Equation 11 becomes:

dc  Ro(e,p)

ot ~ T(M@xt — ) (13)

This equation describes reaction kinetics for small overpotentials in an in-
homogeneous system.

3 Reaction-limited spinodal decomposition

Now let’s analyze spinodal decomposition in a system governed by Eq. 13.
For simplicity, assume Ry(c, u)/kT = r9 = constant. The governing equa-
tion is:

oc

ot

This is the Allen-Cahn equation with a forcing potential, and 7 = % is the
characteristic reaction time to fill a site on the active surface (or channel).
Let c(z,t) = ¢y + v, where cg is a constant and v = ee?*est is a small
perturbation. We want to find the amplification factor s in terms of the

=70 (ftext — §'(c) + KV?c) (14)
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Amplification factor for Allen-Cahn

k = 0, most unstable

§"(co) < 0, unstable

~~.
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k

Figure 2: Linear stability of the forced Allen-Cahn equation as a function of
wavenumber k. Instability occurs inside the spinodal points, where g”(cg) <

0.

wave number k to determine which frequencies will be amplified. Substitute
c=cg+vinto Eq. 14:

d(co + v)

5 =0 (fteat — ' (co) — vg" (co) + £V (co + 1)) (15)

For a homogeneous system at equilibrium §’(cg) = ftest, and the equation
simplifies to:

o _
ot

Substituting v = ee’**e5t, we obtain:

ro (—vg" (o) + kV?v) (16)

s=—ro (g"(co) + K,k‘2) (17)

which is plotted in figure 2. s is only positive for values of ¢y between
the spinodal points, and the most unstable wavelength is & = 0. For a
finite system of size L, only a discrete spectrum of k = %T”, n=20,1,2,...
are permitted. kpqr = %’T in a discrete system, and therefore A4 ~ L.
We expect to see phase separation into a few large domains on the order

of the system size. However, keep in mind that the probability of finding
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(a) ¢ ~ c¢o inside spinodal (b) The initial stages of de- (c) Few large structures A\ ~
text = fi(co) held constant. composition. L.

Figure 3: Evolution of Eq. 14, the forced Allen-Cahn equation.

a long-wavelength perturbation decreases with increasing wavelength. A
numerical simulation of Eq. 14 is presented in figure 3. In contrast to

Cahn-Hilliard evolution, there is no characteristic wavelength apparent in
the microstructure.
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